| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppgbas.1 |  |-  O = ( oppG ` R ) | 
						
							| 2 | 1 | oppggrp |  |-  ( R e. Grp -> O e. Grp ) | 
						
							| 3 |  | eqid |  |-  ( oppG ` O ) = ( oppG ` O ) | 
						
							| 4 | 3 | oppggrp |  |-  ( O e. Grp -> ( oppG ` O ) e. Grp ) | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 | 1 5 | oppgbas |  |-  ( Base ` R ) = ( Base ` O ) | 
						
							| 7 | 3 6 | oppgbas |  |-  ( Base ` R ) = ( Base ` ( oppG ` O ) ) | 
						
							| 8 | 7 | a1i |  |-  ( T. -> ( Base ` R ) = ( Base ` ( oppG ` O ) ) ) | 
						
							| 9 |  | eqidd |  |-  ( T. -> ( Base ` R ) = ( Base ` R ) ) | 
						
							| 10 |  | eqid |  |-  ( +g ` O ) = ( +g ` O ) | 
						
							| 11 |  | eqid |  |-  ( +g ` ( oppG ` O ) ) = ( +g ` ( oppG ` O ) ) | 
						
							| 12 | 10 3 11 | oppgplus |  |-  ( x ( +g ` ( oppG ` O ) ) y ) = ( y ( +g ` O ) x ) | 
						
							| 13 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 14 | 13 1 10 | oppgplus |  |-  ( y ( +g ` O ) x ) = ( x ( +g ` R ) y ) | 
						
							| 15 | 12 14 | eqtri |  |-  ( x ( +g ` ( oppG ` O ) ) y ) = ( x ( +g ` R ) y ) | 
						
							| 16 | 15 | a1i |  |-  ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` ( oppG ` O ) ) y ) = ( x ( +g ` R ) y ) ) | 
						
							| 17 | 8 9 16 | grppropd |  |-  ( T. -> ( ( oppG ` O ) e. Grp <-> R e. Grp ) ) | 
						
							| 18 | 17 | mptru |  |-  ( ( oppG ` O ) e. Grp <-> R e. Grp ) | 
						
							| 19 | 4 18 | sylib |  |-  ( O e. Grp -> R e. Grp ) | 
						
							| 20 | 2 19 | impbii |  |-  ( R e. Grp <-> O e. Grp ) |