Step |
Hyp |
Ref |
Expression |
1 |
|
oppgbas.1 |
|- O = ( oppG ` R ) |
2 |
|
oppgid.2 |
|- .0. = ( 0g ` R ) |
3 |
|
ancom |
|- ( ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) <-> ( ( y ( +g ` R ) x ) = y /\ ( x ( +g ` R ) y ) = y ) ) |
4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
5 |
|
eqid |
|- ( +g ` O ) = ( +g ` O ) |
6 |
4 1 5
|
oppgplus |
|- ( x ( +g ` O ) y ) = ( y ( +g ` R ) x ) |
7 |
6
|
eqeq1i |
|- ( ( x ( +g ` O ) y ) = y <-> ( y ( +g ` R ) x ) = y ) |
8 |
4 1 5
|
oppgplus |
|- ( y ( +g ` O ) x ) = ( x ( +g ` R ) y ) |
9 |
8
|
eqeq1i |
|- ( ( y ( +g ` O ) x ) = y <-> ( x ( +g ` R ) y ) = y ) |
10 |
7 9
|
anbi12i |
|- ( ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) <-> ( ( y ( +g ` R ) x ) = y /\ ( x ( +g ` R ) y ) = y ) ) |
11 |
3 10
|
bitr4i |
|- ( ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) <-> ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) |
12 |
11
|
ralbii |
|- ( A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) <-> A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) |
13 |
12
|
anbi2i |
|- ( ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) ) <-> ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) ) |
14 |
13
|
iotabii |
|- ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
15 4 2
|
grpidval |
|- .0. = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) ) ) |
17 |
1 15
|
oppgbas |
|- ( Base ` R ) = ( Base ` O ) |
18 |
|
eqid |
|- ( 0g ` O ) = ( 0g ` O ) |
19 |
17 5 18
|
grpidval |
|- ( 0g ` O ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) ) |
20 |
14 16 19
|
3eqtr4i |
|- .0. = ( 0g ` O ) |