| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppgbas.1 |  |-  O = ( oppG ` R ) | 
						
							| 2 |  | oppginv.2 |  |-  I = ( invg ` R ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 | 3 2 | grpinvf |  |-  ( R e. Grp -> I : ( Base ` R ) --> ( Base ` R ) ) | 
						
							| 5 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 6 |  | eqid |  |-  ( +g ` O ) = ( +g ` O ) | 
						
							| 7 | 5 1 6 | oppgplus |  |-  ( ( I ` x ) ( +g ` O ) x ) = ( x ( +g ` R ) ( I ` x ) ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 9 | 3 5 8 2 | grprinv |  |-  ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( I ` x ) ) = ( 0g ` R ) ) | 
						
							| 10 | 7 9 | eqtrid |  |-  ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) | 
						
							| 11 | 10 | ralrimiva |  |-  ( R e. Grp -> A. x e. ( Base ` R ) ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) | 
						
							| 12 | 1 | oppggrp |  |-  ( R e. Grp -> O e. Grp ) | 
						
							| 13 | 1 3 | oppgbas |  |-  ( Base ` R ) = ( Base ` O ) | 
						
							| 14 | 1 8 | oppgid |  |-  ( 0g ` R ) = ( 0g ` O ) | 
						
							| 15 |  | eqid |  |-  ( invg ` O ) = ( invg ` O ) | 
						
							| 16 | 13 6 14 15 | isgrpinv |  |-  ( O e. Grp -> ( ( I : ( Base ` R ) --> ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) <-> ( invg ` O ) = I ) ) | 
						
							| 17 | 12 16 | syl |  |-  ( R e. Grp -> ( ( I : ( Base ` R ) --> ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( I ` x ) ( +g ` O ) x ) = ( 0g ` R ) ) <-> ( invg ` O ) = I ) ) | 
						
							| 18 | 4 11 17 | mpbi2and |  |-  ( R e. Grp -> ( invg ` O ) = I ) | 
						
							| 19 | 18 | eqcomd |  |-  ( R e. Grp -> I = ( invg ` O ) ) |