Step |
Hyp |
Ref |
Expression |
1 |
|
oppgbas.1 |
|- O = ( oppG ` R ) |
2 |
1
|
oppgmnd |
|- ( R e. Mnd -> O e. Mnd ) |
3 |
|
eqid |
|- ( oppG ` O ) = ( oppG ` O ) |
4 |
3
|
oppgmnd |
|- ( O e. Mnd -> ( oppG ` O ) e. Mnd ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
1 5
|
oppgbas |
|- ( Base ` R ) = ( Base ` O ) |
7 |
3 6
|
oppgbas |
|- ( Base ` R ) = ( Base ` ( oppG ` O ) ) |
8 |
7
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( oppG ` O ) ) ) |
9 |
|
eqidd |
|- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
10 |
|
eqid |
|- ( +g ` O ) = ( +g ` O ) |
11 |
|
eqid |
|- ( +g ` ( oppG ` O ) ) = ( +g ` ( oppG ` O ) ) |
12 |
10 3 11
|
oppgplus |
|- ( x ( +g ` ( oppG ` O ) ) y ) = ( y ( +g ` O ) x ) |
13 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
14 |
13 1 10
|
oppgplus |
|- ( y ( +g ` O ) x ) = ( x ( +g ` R ) y ) |
15 |
12 14
|
eqtri |
|- ( x ( +g ` ( oppG ` O ) ) y ) = ( x ( +g ` R ) y ) |
16 |
15
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` ( oppG ` O ) ) y ) = ( x ( +g ` R ) y ) ) |
17 |
8 9 16
|
mndpropd |
|- ( T. -> ( ( oppG ` O ) e. Mnd <-> R e. Mnd ) ) |
18 |
17
|
mptru |
|- ( ( oppG ` O ) e. Mnd <-> R e. Mnd ) |
19 |
4 18
|
sylib |
|- ( O e. Mnd -> R e. Mnd ) |
20 |
2 19
|
impbii |
|- ( R e. Mnd <-> O e. Mnd ) |