Step |
Hyp |
Ref |
Expression |
1 |
|
mndtccat.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
2 |
|
mndtccat.m |
|- ( ph -> M e. Mnd ) |
3 |
|
oppgoppchom.d |
|- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
4 |
|
oppgoppchom.o |
|- O = ( oppCat ` C ) |
5 |
|
oppgoppchom.x |
|- ( ph -> X e. ( Base ` D ) ) |
6 |
|
oppgoppchom.y |
|- ( ph -> Y e. ( Base ` O ) ) |
7 |
|
oppgoppchom.h |
|- ( ph -> H = ( Hom ` D ) ) |
8 |
|
oppgoppchom.j |
|- ( ph -> J = ( Hom ` O ) ) |
9 |
|
eqid |
|- ( oppG ` M ) = ( oppG ` M ) |
10 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
11 |
9 10
|
oppgbas |
|- ( Base ` M ) = ( Base ` ( oppG ` M ) ) |
12 |
11
|
a1i |
|- ( ph -> ( Base ` M ) = ( Base ` ( oppG ` M ) ) ) |
13 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
14 |
4 13
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
15 |
14
|
eqcomi |
|- ( Base ` O ) = ( Base ` C ) |
16 |
15
|
a1i |
|- ( ph -> ( Base ` O ) = ( Base ` C ) ) |
17 |
|
eqidd |
|- ( ph -> ( Hom ` C ) = ( Hom ` C ) ) |
18 |
1 2 16 6 6 17
|
mndtchom |
|- ( ph -> ( Y ( Hom ` C ) Y ) = ( Base ` M ) ) |
19 |
9
|
oppgmnd |
|- ( M e. Mnd -> ( oppG ` M ) e. Mnd ) |
20 |
2 19
|
syl |
|- ( ph -> ( oppG ` M ) e. Mnd ) |
21 |
|
eqidd |
|- ( ph -> ( Base ` D ) = ( Base ` D ) ) |
22 |
3 20 21 5 5 7
|
mndtchom |
|- ( ph -> ( X H X ) = ( Base ` ( oppG ` M ) ) ) |
23 |
12 18 22
|
3eqtr4rd |
|- ( ph -> ( X H X ) = ( Y ( Hom ` C ) Y ) ) |
24 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
25 |
24 4
|
oppchom |
|- ( Y ( Hom ` O ) Y ) = ( Y ( Hom ` C ) Y ) |
26 |
23 25
|
eqtr4di |
|- ( ph -> ( X H X ) = ( Y ( Hom ` O ) Y ) ) |
27 |
8
|
oveqd |
|- ( ph -> ( Y J Y ) = ( Y ( Hom ` O ) Y ) ) |
28 |
26 27
|
eqtr4d |
|- ( ph -> ( X H X ) = ( Y J Y ) ) |