Step |
Hyp |
Ref |
Expression |
1 |
|
oppgval.2 |
|- .+ = ( +g ` R ) |
2 |
|
oppgval.3 |
|- O = ( oppG ` R ) |
3 |
|
oppgplusfval.4 |
|- .+b = ( +g ` O ) |
4 |
1 2
|
oppgval |
|- O = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) |
5 |
4
|
fveq2i |
|- ( +g ` O ) = ( +g ` ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
6 |
1
|
fvexi |
|- .+ e. _V |
7 |
6
|
tposex |
|- tpos .+ e. _V |
8 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
9 |
8
|
setsid |
|- ( ( R e. _V /\ tpos .+ e. _V ) -> tpos .+ = ( +g ` ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) ) |
10 |
7 9
|
mpan2 |
|- ( R e. _V -> tpos .+ = ( +g ` ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) ) |
11 |
5 10
|
eqtr4id |
|- ( R e. _V -> ( +g ` O ) = tpos .+ ) |
12 |
|
tpos0 |
|- tpos (/) = (/) |
13 |
8
|
str0 |
|- (/) = ( +g ` (/) ) |
14 |
12 13
|
eqtr2i |
|- ( +g ` (/) ) = tpos (/) |
15 |
|
reldmsets |
|- Rel dom sSet |
16 |
15
|
ovprc1 |
|- ( -. R e. _V -> ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) = (/) ) |
17 |
4 16
|
eqtrid |
|- ( -. R e. _V -> O = (/) ) |
18 |
17
|
fveq2d |
|- ( -. R e. _V -> ( +g ` O ) = ( +g ` (/) ) ) |
19 |
|
fvprc |
|- ( -. R e. _V -> ( +g ` R ) = (/) ) |
20 |
1 19
|
eqtrid |
|- ( -. R e. _V -> .+ = (/) ) |
21 |
20
|
tposeqd |
|- ( -. R e. _V -> tpos .+ = tpos (/) ) |
22 |
14 18 21
|
3eqtr4a |
|- ( -. R e. _V -> ( +g ` O ) = tpos .+ ) |
23 |
11 22
|
pm2.61i |
|- ( +g ` O ) = tpos .+ |
24 |
3 23
|
eqtri |
|- .+b = tpos .+ |