| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppggic.o |  |-  O = ( oppG ` G ) | 
						
							| 2 |  | subgrcl |  |-  ( x e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 3 |  | subgrcl |  |-  ( x e. ( SubGrp ` O ) -> O e. Grp ) | 
						
							| 4 | 1 | oppggrpb |  |-  ( G e. Grp <-> O e. Grp ) | 
						
							| 5 | 3 4 | sylibr |  |-  ( x e. ( SubGrp ` O ) -> G e. Grp ) | 
						
							| 6 | 1 | oppgsubm |  |-  ( SubMnd ` G ) = ( SubMnd ` O ) | 
						
							| 7 | 6 | eleq2i |  |-  ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) | 
						
							| 8 | 7 | a1i |  |-  ( G e. Grp -> ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) ) | 
						
							| 9 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 10 | 1 9 | oppginv |  |-  ( G e. Grp -> ( invg ` G ) = ( invg ` O ) ) | 
						
							| 11 | 10 | fveq1d |  |-  ( G e. Grp -> ( ( invg ` G ) ` y ) = ( ( invg ` O ) ` y ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( G e. Grp -> ( ( ( invg ` G ) ` y ) e. x <-> ( ( invg ` O ) ` y ) e. x ) ) | 
						
							| 13 | 12 | ralbidv |  |-  ( G e. Grp -> ( A. y e. x ( ( invg ` G ) ` y ) e. x <-> A. y e. x ( ( invg ` O ) ` y ) e. x ) ) | 
						
							| 14 | 8 13 | anbi12d |  |-  ( G e. Grp -> ( ( x e. ( SubMnd ` G ) /\ A. y e. x ( ( invg ` G ) ` y ) e. x ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) | 
						
							| 15 | 9 | issubg3 |  |-  ( G e. Grp -> ( x e. ( SubGrp ` G ) <-> ( x e. ( SubMnd ` G ) /\ A. y e. x ( ( invg ` G ) ` y ) e. x ) ) ) | 
						
							| 16 |  | eqid |  |-  ( invg ` O ) = ( invg ` O ) | 
						
							| 17 | 16 | issubg3 |  |-  ( O e. Grp -> ( x e. ( SubGrp ` O ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) | 
						
							| 18 | 4 17 | sylbi |  |-  ( G e. Grp -> ( x e. ( SubGrp ` O ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) | 
						
							| 19 | 14 15 18 | 3bitr4d |  |-  ( G e. Grp -> ( x e. ( SubGrp ` G ) <-> x e. ( SubGrp ` O ) ) ) | 
						
							| 20 | 2 5 19 | pm5.21nii |  |-  ( x e. ( SubGrp ` G ) <-> x e. ( SubGrp ` O ) ) | 
						
							| 21 | 20 | eqriv |  |-  ( SubGrp ` G ) = ( SubGrp ` O ) |