Metamath Proof Explorer


Theorem oppgtgp

Description: The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppgtmd.1
|- O = ( oppG ` G )
Assertion oppgtgp
|- ( G e. TopGrp -> O e. TopGrp )

Proof

Step Hyp Ref Expression
1 oppgtmd.1
 |-  O = ( oppG ` G )
2 tgpgrp
 |-  ( G e. TopGrp -> G e. Grp )
3 1 oppggrp
 |-  ( G e. Grp -> O e. Grp )
4 2 3 syl
 |-  ( G e. TopGrp -> O e. Grp )
5 tgptmd
 |-  ( G e. TopGrp -> G e. TopMnd )
6 1 oppgtmd
 |-  ( G e. TopMnd -> O e. TopMnd )
7 5 6 syl
 |-  ( G e. TopGrp -> O e. TopMnd )
8 eqid
 |-  ( invg ` G ) = ( invg ` G )
9 1 8 oppginv
 |-  ( G e. Grp -> ( invg ` G ) = ( invg ` O ) )
10 2 9 syl
 |-  ( G e. TopGrp -> ( invg ` G ) = ( invg ` O ) )
11 eqid
 |-  ( TopOpen ` G ) = ( TopOpen ` G )
12 11 8 tgpinv
 |-  ( G e. TopGrp -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) )
13 10 12 eqeltrrd
 |-  ( G e. TopGrp -> ( invg ` O ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) )
14 1 11 oppgtopn
 |-  ( TopOpen ` G ) = ( TopOpen ` O )
15 eqid
 |-  ( invg ` O ) = ( invg ` O )
16 14 15 istgp
 |-  ( O e. TopGrp <-> ( O e. Grp /\ O e. TopMnd /\ ( invg ` O ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) )
17 4 7 13 16 syl3anbrc
 |-  ( G e. TopGrp -> O e. TopGrp )