Step |
Hyp |
Ref |
Expression |
1 |
|
oppgtmd.1 |
|- O = ( oppG ` G ) |
2 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
3 |
1
|
oppggrp |
|- ( G e. Grp -> O e. Grp ) |
4 |
2 3
|
syl |
|- ( G e. TopGrp -> O e. Grp ) |
5 |
|
tgptmd |
|- ( G e. TopGrp -> G e. TopMnd ) |
6 |
1
|
oppgtmd |
|- ( G e. TopMnd -> O e. TopMnd ) |
7 |
5 6
|
syl |
|- ( G e. TopGrp -> O e. TopMnd ) |
8 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
9 |
1 8
|
oppginv |
|- ( G e. Grp -> ( invg ` G ) = ( invg ` O ) ) |
10 |
2 9
|
syl |
|- ( G e. TopGrp -> ( invg ` G ) = ( invg ` O ) ) |
11 |
|
eqid |
|- ( TopOpen ` G ) = ( TopOpen ` G ) |
12 |
11 8
|
tgpinv |
|- ( G e. TopGrp -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
13 |
10 12
|
eqeltrrd |
|- ( G e. TopGrp -> ( invg ` O ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
14 |
1 11
|
oppgtopn |
|- ( TopOpen ` G ) = ( TopOpen ` O ) |
15 |
|
eqid |
|- ( invg ` O ) = ( invg ` O ) |
16 |
14 15
|
istgp |
|- ( O e. TopGrp <-> ( O e. Grp /\ O e. TopMnd /\ ( invg ` O ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) ) |
17 |
4 7 13 16
|
syl3anbrc |
|- ( G e. TopGrp -> O e. TopGrp ) |