Step |
Hyp |
Ref |
Expression |
1 |
|
oppgval.2 |
|- .+ = ( +g ` R ) |
2 |
|
oppgval.3 |
|- O = ( oppG ` R ) |
3 |
|
id |
|- ( x = R -> x = R ) |
4 |
|
fveq2 |
|- ( x = R -> ( +g ` x ) = ( +g ` R ) ) |
5 |
4 1
|
eqtr4di |
|- ( x = R -> ( +g ` x ) = .+ ) |
6 |
5
|
tposeqd |
|- ( x = R -> tpos ( +g ` x ) = tpos .+ ) |
7 |
6
|
opeq2d |
|- ( x = R -> <. ( +g ` ndx ) , tpos ( +g ` x ) >. = <. ( +g ` ndx ) , tpos .+ >. ) |
8 |
3 7
|
oveq12d |
|- ( x = R -> ( x sSet <. ( +g ` ndx ) , tpos ( +g ` x ) >. ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
9 |
|
df-oppg |
|- oppG = ( x e. _V |-> ( x sSet <. ( +g ` ndx ) , tpos ( +g ` x ) >. ) ) |
10 |
|
ovex |
|- ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) e. _V |
11 |
8 9 10
|
fvmpt |
|- ( R e. _V -> ( oppG ` R ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
12 |
|
fvprc |
|- ( -. R e. _V -> ( oppG ` R ) = (/) ) |
13 |
|
reldmsets |
|- Rel dom sSet |
14 |
13
|
ovprc1 |
|- ( -. R e. _V -> ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) = (/) ) |
15 |
12 14
|
eqtr4d |
|- ( -. R e. _V -> ( oppG ` R ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
16 |
11 15
|
pm2.61i |
|- ( oppG ` R ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) |
17 |
2 16
|
eqtri |
|- O = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) |