Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
opphl.l |
|- L = ( LineG ` G ) |
6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
8 |
|
opphl.k |
|- K = ( hlG ` G ) |
9 |
|
opphl.a |
|- ( ph -> A e. P ) |
10 |
|
opphl.b |
|- ( ph -> B e. P ) |
11 |
|
opphl.c |
|- ( ph -> C e. P ) |
12 |
|
opphl.1 |
|- ( ph -> A O C ) |
13 |
|
opphl.2 |
|- ( ph -> R e. D ) |
14 |
|
opphl.3 |
|- ( ph -> A ( K ` R ) B ) |
15 |
6
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D e. ran L ) |
16 |
7
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> G e. TarskiG ) |
17 |
|
eqid |
|- ( ( pInvG ` G ) ` m ) = ( ( pInvG ` G ) ` m ) |
18 |
10
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B e. P ) |
19 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
20 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> m e. P ) |
21 |
9
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A e. P ) |
22 |
1 2 3 5 19 16 20 17 21
|
mircl |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) e. P ) |
23 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> y e. D ) |
24 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z e. D ) |
25 |
13
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> R e. D ) |
26 |
11
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> C e. P ) |
27 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> x e. D ) |
28 |
12
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A O C ) |
29 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A L x ) ( perpG ` G ) D ) |
30 |
5 16 29
|
perpln1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A L x ) e. ran L ) |
31 |
1 2 3 5 16 30 15 29
|
perpcom |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( A L x ) ) |
32 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( C L z ) ( perpG ` G ) D ) |
33 |
5 16 32
|
perpln1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( C L z ) e. ran L ) |
34 |
1 2 3 5 16 33 15 32
|
perpcom |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( C L z ) ) |
35 |
1 5 3 16 15 27
|
tglnpt |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> x e. P ) |
36 |
1 3 5 16 21 35 30
|
tglnne |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A =/= x ) |
37 |
1 3 8 21 21 35 16 36
|
hlid |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A ( K ` x ) A ) |
38 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z = ( ( ( pInvG ` G ) ` m ) ` x ) ) |
39 |
38
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` x ) = z ) |
40 |
1 2 3 4 5 15 16 8 17 21 26 27 24 20 28 31 34 21 39
|
opphllem6 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A ( K ` x ) A <-> ( ( ( pInvG ` G ) ` m ) ` A ) ( K ` z ) C ) ) |
41 |
37 40
|
mpbid |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) ( K ` z ) C ) |
42 |
1 2 3 4 5 15 16 8 17 21 26 27 24 20 28 31 34 21 22 37 41
|
opphllem5 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A O ( ( ( pInvG ` G ) ` m ) ` A ) ) |
43 |
39 24
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` x ) e. D ) |
44 |
1 2 3 5 19 16 17 15 20 27 43
|
mirln2 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> m e. D ) |
45 |
1 2 3 5 19 16 20 17 21
|
mirmir |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` ( ( ( pInvG ` G ) ` m ) ` A ) ) = A ) |
46 |
45
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A = ( ( ( pInvG ` G ) ` m ) ` ( ( ( pInvG ` G ) ` m ) ` A ) ) ) |
47 |
1 5 3 7 6 13
|
tglnpt |
|- ( ph -> R e. P ) |
48 |
1 3 8 9 10 47 7 14
|
hlne1 |
|- ( ph -> A =/= R ) |
49 |
48
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> A =/= R ) |
50 |
1 3 8 9 10 47 7 14
|
hlne2 |
|- ( ph -> B =/= R ) |
51 |
50
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B =/= R ) |
52 |
1 3 8 9 10 47 7
|
ishlg |
|- ( ph -> ( A ( K ` R ) B <-> ( A =/= R /\ B =/= R /\ ( A e. ( R I B ) \/ B e. ( R I A ) ) ) ) ) |
53 |
14 52
|
mpbid |
|- ( ph -> ( A =/= R /\ B =/= R /\ ( A e. ( R I B ) \/ B e. ( R I A ) ) ) ) |
54 |
53
|
simp3d |
|- ( ph -> ( A e. ( R I B ) \/ B e. ( R I A ) ) ) |
55 |
54
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( A e. ( R I B ) \/ B e. ( R I A ) ) ) |
56 |
1 2 3 4 5 15 16 17 21 18 22 25 42 44 46 49 51 55
|
opphllem2 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B O ( ( ( pInvG ` G ) ` m ) ` A ) ) |
57 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( B L y ) ( perpG ` G ) D ) |
58 |
5 16 57
|
perpln1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( B L y ) e. ran L ) |
59 |
1 2 3 5 16 58 15 57
|
perpcom |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( B L y ) ) |
60 |
1 5 3 16 15 24
|
tglnpt |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z e. P ) |
61 |
1 3 8 22 26 60 16 41
|
hlne1 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) =/= z ) |
62 |
1 3 8 22 26 60 16 5 41
|
hlln |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( ( ( pInvG ` G ) ` m ) ` A ) e. ( C L z ) ) |
63 |
1 3 5 16 26 60 33
|
tglnne |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> C =/= z ) |
64 |
1 3 5 16 26 60 63
|
tglinerflx2 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> z e. ( C L z ) ) |
65 |
1 3 5 16 22 60 61 61 33 62 64
|
tglinethru |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> ( C L z ) = ( ( ( ( pInvG ` G ) ` m ) ` A ) L z ) ) |
66 |
34 65
|
breqtrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> D ( perpG ` G ) ( ( ( ( pInvG ` G ) ` m ) ` A ) L z ) ) |
67 |
1 5 3 16 15 23
|
tglnpt |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> y e. P ) |
68 |
1 3 5 16 18 67 58
|
tglnne |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B =/= y ) |
69 |
1 3 8 18 21 67 16 68
|
hlid |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B ( K ` y ) B ) |
70 |
1 3 8 22 26 60 16 41
|
hlcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> C ( K ` z ) ( ( ( pInvG ` G ) ` m ) ` A ) ) |
71 |
1 2 3 4 5 15 16 8 17 18 22 23 24 20 56 59 66 18 26 69 70
|
opphllem5 |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) /\ y e. D ) /\ ( B L y ) ( perpG ` G ) D ) -> B O C ) |
72 |
1 2 3 4 5 6 7 9 11 12
|
oppne1 |
|- ( ph -> -. A e. D ) |
73 |
1 3 8 9 10 47 7 5 14
|
hlln |
|- ( ph -> A e. ( B L R ) ) |
74 |
73
|
adantr |
|- ( ( ph /\ B e. D ) -> A e. ( B L R ) ) |
75 |
7
|
adantr |
|- ( ( ph /\ B e. D ) -> G e. TarskiG ) |
76 |
10
|
adantr |
|- ( ( ph /\ B e. D ) -> B e. P ) |
77 |
47
|
adantr |
|- ( ( ph /\ B e. D ) -> R e. P ) |
78 |
50
|
adantr |
|- ( ( ph /\ B e. D ) -> B =/= R ) |
79 |
6
|
adantr |
|- ( ( ph /\ B e. D ) -> D e. ran L ) |
80 |
|
simpr |
|- ( ( ph /\ B e. D ) -> B e. D ) |
81 |
13
|
adantr |
|- ( ( ph /\ B e. D ) -> R e. D ) |
82 |
1 3 5 75 76 77 78 78 79 80 81
|
tglinethru |
|- ( ( ph /\ B e. D ) -> D = ( B L R ) ) |
83 |
74 82
|
eleqtrrd |
|- ( ( ph /\ B e. D ) -> A e. D ) |
84 |
72 83
|
mtand |
|- ( ph -> -. B e. D ) |
85 |
1 2 3 5 7 6 10 84
|
footex |
|- ( ph -> E. y e. D ( B L y ) ( perpG ` G ) D ) |
86 |
85
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) -> E. y e. D ( B L y ) ( perpG ` G ) D ) |
87 |
71 86
|
r19.29a |
|- ( ( ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) /\ m e. P ) /\ z = ( ( ( pInvG ` G ) ` m ) ` x ) ) -> B O C ) |
88 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> G e. TarskiG ) |
89 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> D e. ran L ) |
90 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> x e. D ) |
91 |
1 5 3 88 89 90
|
tglnpt |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> x e. P ) |
92 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> z e. D ) |
93 |
1 5 3 88 89 92
|
tglnpt |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> z e. P ) |
94 |
1 2 3 4 5 6 7 9 11 12
|
opptgdim2 |
|- ( ph -> G TarskiGDim>= 2 ) |
95 |
94
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> G TarskiGDim>= 2 ) |
96 |
1 2 3 5 88 19 91 93 95
|
midex |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> E. m e. P z = ( ( ( pInvG ` G ) ` m ) ` x ) ) |
97 |
87 96
|
r19.29a |
|- ( ( ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) /\ z e. D ) /\ ( C L z ) ( perpG ` G ) D ) -> B O C ) |
98 |
1 2 3 4 5 6 7 9 11 12
|
oppne2 |
|- ( ph -> -. C e. D ) |
99 |
1 2 3 5 7 6 11 98
|
footex |
|- ( ph -> E. z e. D ( C L z ) ( perpG ` G ) D ) |
100 |
99
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) -> E. z e. D ( C L z ) ( perpG ` G ) D ) |
101 |
97 100
|
r19.29a |
|- ( ( ( ph /\ x e. D ) /\ ( A L x ) ( perpG ` G ) D ) -> B O C ) |
102 |
1 2 3 5 7 6 9 72
|
footex |
|- ( ph -> E. x e. D ( A L x ) ( perpG ` G ) D ) |
103 |
101 102
|
r19.29a |
|- ( ph -> B O C ) |