| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
opphl.l |
|- L = ( LineG ` G ) |
| 6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
| 7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
opphllem1.s |
|- S = ( ( pInvG ` G ) ` M ) |
| 9 |
|
opphllem1.a |
|- ( ph -> A e. P ) |
| 10 |
|
opphllem1.b |
|- ( ph -> B e. P ) |
| 11 |
|
opphllem1.c |
|- ( ph -> C e. P ) |
| 12 |
|
opphllem1.r |
|- ( ph -> R e. D ) |
| 13 |
|
opphllem1.o |
|- ( ph -> A O C ) |
| 14 |
|
opphllem1.m |
|- ( ph -> M e. D ) |
| 15 |
|
opphllem1.n |
|- ( ph -> A = ( S ` C ) ) |
| 16 |
|
opphllem1.x |
|- ( ph -> A =/= R ) |
| 17 |
|
opphllem1.y |
|- ( ph -> B =/= R ) |
| 18 |
|
opphllem1.z |
|- ( ph -> B e. ( R I A ) ) |
| 19 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
|- ( ph -> -. A e. D ) |
| 20 |
|
simpr |
|- ( ( ( ph /\ B e. D ) /\ A = B ) -> A = B ) |
| 21 |
|
simplr |
|- ( ( ( ph /\ B e. D ) /\ A = B ) -> B e. D ) |
| 22 |
20 21
|
eqeltrd |
|- ( ( ( ph /\ B e. D ) /\ A = B ) -> A e. D ) |
| 23 |
7
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> G e. TarskiG ) |
| 24 |
10
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B e. P ) |
| 25 |
1 5 3 7 6 12
|
tglnpt |
|- ( ph -> R e. P ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> R e. P ) |
| 27 |
9
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. P ) |
| 28 |
17
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B =/= R ) |
| 29 |
28
|
necomd |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> R =/= B ) |
| 30 |
18
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B e. ( R I A ) ) |
| 31 |
1 3 5 23 26 24 27 29 30
|
btwnlng3 |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. ( R L B ) ) |
| 32 |
1 3 5 23 24 26 27 28 31
|
lncom |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. ( B L R ) ) |
| 33 |
6
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> D e. ran L ) |
| 34 |
|
simplr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> B e. D ) |
| 35 |
12
|
ad2antrr |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> R e. D ) |
| 36 |
1 3 5 23 24 26 28 28 33 34 35
|
tglinethru |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> D = ( B L R ) ) |
| 37 |
32 36
|
eleqtrrd |
|- ( ( ( ph /\ B e. D ) /\ A =/= B ) -> A e. D ) |
| 38 |
22 37
|
pm2.61dane |
|- ( ( ph /\ B e. D ) -> A e. D ) |
| 39 |
19 38
|
mtand |
|- ( ph -> -. B e. D ) |
| 40 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
|- ( ph -> -. C e. D ) |
| 41 |
1 5 3 7 6 14
|
tglnpt |
|- ( ph -> M e. P ) |
| 42 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 43 |
1 2 3 5 42 7 41 8 9
|
mirbtwn |
|- ( ph -> M e. ( ( S ` A ) I A ) ) |
| 44 |
15
|
eqcomd |
|- ( ph -> ( S ` C ) = A ) |
| 45 |
1 2 3 5 42 7 41 8 11 44
|
mircom |
|- ( ph -> ( S ` A ) = C ) |
| 46 |
45
|
oveq1d |
|- ( ph -> ( ( S ` A ) I A ) = ( C I A ) ) |
| 47 |
43 46
|
eleqtrd |
|- ( ph -> M e. ( C I A ) ) |
| 48 |
1 2 3 7 25 11 9 10 41 18 47
|
axtgpasch |
|- ( ph -> E. t e. P ( t e. ( B I C ) /\ t e. ( M I R ) ) ) |
| 49 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> G e. TarskiG ) |
| 50 |
25
|
ad2antrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> R e. P ) |
| 51 |
|
simplrl |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. P ) |
| 52 |
|
simplrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> ( t e. ( B I C ) /\ t e. ( M I R ) ) ) |
| 53 |
52
|
simprd |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. ( M I R ) ) |
| 54 |
|
simpr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> M = R ) |
| 55 |
54
|
oveq1d |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> ( M I R ) = ( R I R ) ) |
| 56 |
53 55
|
eleqtrd |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. ( R I R ) ) |
| 57 |
1 2 3 49 50 51 56
|
axtgbtwnid |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> R = t ) |
| 58 |
12
|
ad2antrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> R e. D ) |
| 59 |
57 58
|
eqeltrrd |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M = R ) -> t e. D ) |
| 60 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> G e. TarskiG ) |
| 61 |
41
|
ad2antrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> M e. P ) |
| 62 |
25
|
ad2antrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> R e. P ) |
| 63 |
|
simplrl |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. P ) |
| 64 |
|
simpr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> M =/= R ) |
| 65 |
|
simplrr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> ( t e. ( B I C ) /\ t e. ( M I R ) ) ) |
| 66 |
65
|
simprd |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. ( M I R ) ) |
| 67 |
1 3 5 60 61 62 63 64 66
|
btwnlng1 |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. ( M L R ) ) |
| 68 |
7
|
adantr |
|- ( ( ph /\ M =/= R ) -> G e. TarskiG ) |
| 69 |
41
|
adantr |
|- ( ( ph /\ M =/= R ) -> M e. P ) |
| 70 |
25
|
adantr |
|- ( ( ph /\ M =/= R ) -> R e. P ) |
| 71 |
|
simpr |
|- ( ( ph /\ M =/= R ) -> M =/= R ) |
| 72 |
6
|
adantr |
|- ( ( ph /\ M =/= R ) -> D e. ran L ) |
| 73 |
14
|
adantr |
|- ( ( ph /\ M =/= R ) -> M e. D ) |
| 74 |
12
|
adantr |
|- ( ( ph /\ M =/= R ) -> R e. D ) |
| 75 |
1 3 5 68 69 70 71 71 72 73 74
|
tglinethru |
|- ( ( ph /\ M =/= R ) -> D = ( M L R ) ) |
| 76 |
75
|
adantlr |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> D = ( M L R ) ) |
| 77 |
67 76
|
eleqtrrd |
|- ( ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) /\ M =/= R ) -> t e. D ) |
| 78 |
59 77
|
pm2.61dane |
|- ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) -> t e. D ) |
| 79 |
|
simprrl |
|- ( ( ph /\ ( t e. P /\ ( t e. ( B I C ) /\ t e. ( M I R ) ) ) ) -> t e. ( B I C ) ) |
| 80 |
48 78 79
|
reximssdv |
|- ( ph -> E. t e. D t e. ( B I C ) ) |
| 81 |
39 40 80
|
jca31 |
|- ( ph -> ( ( -. B e. D /\ -. C e. D ) /\ E. t e. D t e. ( B I C ) ) ) |
| 82 |
1 2 3 4 10 11
|
islnopp |
|- ( ph -> ( B O C <-> ( ( -. B e. D /\ -. C e. D ) /\ E. t e. D t e. ( B I C ) ) ) ) |
| 83 |
81 82
|
mpbird |
|- ( ph -> B O C ) |