Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
opphl.l |
|- L = ( LineG ` G ) |
6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
8 |
|
opphllem1.s |
|- S = ( ( pInvG ` G ) ` M ) |
9 |
|
opphllem1.a |
|- ( ph -> A e. P ) |
10 |
|
opphllem1.b |
|- ( ph -> B e. P ) |
11 |
|
opphllem1.c |
|- ( ph -> C e. P ) |
12 |
|
opphllem1.r |
|- ( ph -> R e. D ) |
13 |
|
opphllem1.o |
|- ( ph -> A O C ) |
14 |
|
opphllem1.m |
|- ( ph -> M e. D ) |
15 |
|
opphllem1.n |
|- ( ph -> A = ( S ` C ) ) |
16 |
|
opphllem1.x |
|- ( ph -> A =/= R ) |
17 |
|
opphllem1.y |
|- ( ph -> B =/= R ) |
18 |
|
opphllem2.z |
|- ( ph -> ( A e. ( R I B ) \/ B e. ( R I A ) ) ) |
19 |
6
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> D e. ran L ) |
20 |
7
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> G e. TarskiG ) |
21 |
11
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> C e. P ) |
22 |
10
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> B e. P ) |
23 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
24 |
1 5 3 7 6 14
|
tglnpt |
|- ( ph -> M e. P ) |
25 |
24
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> M e. P ) |
26 |
1 2 3 5 23 20 25 8 22
|
mircl |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) e. P ) |
27 |
14
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> M e. D ) |
28 |
12
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> R e. D ) |
29 |
1 2 3 5 23 20 8 19 27 28
|
mirln |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) e. D ) |
30 |
|
simpr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> A = B ) |
31 |
|
simplr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> B e. D ) |
32 |
30 31
|
eqeltrd |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> A e. D ) |
33 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> G e. TarskiG ) |
34 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B e. P ) |
35 |
1 5 3 7 6 12
|
tglnpt |
|- ( ph -> R e. P ) |
36 |
35
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R e. P ) |
37 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. P ) |
38 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B =/= R ) |
39 |
38
|
necomd |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R =/= B ) |
40 |
|
simpllr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( R I B ) ) |
41 |
1 3 5 33 36 34 37 39 40
|
btwnlng1 |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( R L B ) ) |
42 |
1 3 5 33 34 36 37 38 41
|
lncom |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( B L R ) ) |
43 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> D e. ran L ) |
44 |
|
simplr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B e. D ) |
45 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R e. D ) |
46 |
1 3 5 33 34 36 38 38 43 44 45
|
tglinethru |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> D = ( B L R ) ) |
47 |
42 46
|
eleqtrrd |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. D ) |
48 |
32 47
|
pm2.61dane |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) -> A e. D ) |
49 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
|- ( ph -> -. A e. D ) |
50 |
49
|
ad2antrr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) -> -. A e. D ) |
51 |
48 50
|
pm2.65da |
|- ( ( ph /\ A e. ( R I B ) ) -> -. B e. D ) |
52 |
20
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> G e. TarskiG ) |
53 |
25
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> M e. P ) |
54 |
22
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> B e. P ) |
55 |
1 2 3 5 23 52 53 8 54
|
mirmir |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` ( S ` B ) ) = B ) |
56 |
19
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> D e. ran L ) |
57 |
27
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> M e. D ) |
58 |
|
simpr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` B ) e. D ) |
59 |
1 2 3 5 23 52 8 56 57 58
|
mirln |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` ( S ` B ) ) e. D ) |
60 |
55 59
|
eqeltrrd |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> B e. D ) |
61 |
51 60
|
mtand |
|- ( ( ph /\ A e. ( R I B ) ) -> -. ( S ` B ) e. D ) |
62 |
1 2 3 5 23 20 25 8 22
|
mirbtwn |
|- ( ( ph /\ A e. ( R I B ) ) -> M e. ( ( S ` B ) I B ) ) |
63 |
1 2 3 4 26 22 27 61 51 62
|
islnoppd |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) O B ) |
64 |
|
eqidd |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) = ( S ` B ) ) |
65 |
|
nelne2 |
|- ( ( ( S ` R ) e. D /\ -. ( S ` B ) e. D ) -> ( S ` R ) =/= ( S ` B ) ) |
66 |
29 61 65
|
syl2anc |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) =/= ( S ` B ) ) |
67 |
66
|
necomd |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) =/= ( S ` R ) ) |
68 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
|- ( ph -> -. C e. D ) |
69 |
68
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> -. C e. D ) |
70 |
|
nelne2 |
|- ( ( ( S ` R ) e. D /\ -. C e. D ) -> ( S ` R ) =/= C ) |
71 |
29 69 70
|
syl2anc |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) =/= C ) |
72 |
71
|
necomd |
|- ( ( ph /\ A e. ( R I B ) ) -> C =/= ( S ` R ) ) |
73 |
15
|
eqcomd |
|- ( ph -> ( S ` C ) = A ) |
74 |
1 2 3 5 23 7 24 8 11 73
|
mircom |
|- ( ph -> ( S ` A ) = C ) |
75 |
74
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` A ) = C ) |
76 |
35
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> R e. P ) |
77 |
9
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> A e. P ) |
78 |
|
simpr |
|- ( ( ph /\ A e. ( R I B ) ) -> A e. ( R I B ) ) |
79 |
1 2 3 5 23 20 25 8 76 77 22 78
|
mirbtwni |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` A ) e. ( ( S ` R ) I ( S ` B ) ) ) |
80 |
75 79
|
eqeltrrd |
|- ( ( ph /\ A e. ( R I B ) ) -> C e. ( ( S ` R ) I ( S ` B ) ) ) |
81 |
1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80
|
opphllem1 |
|- ( ( ph /\ A e. ( R I B ) ) -> C O B ) |
82 |
1 2 3 4 5 19 20 21 22 81
|
oppcom |
|- ( ( ph /\ A e. ( R I B ) ) -> B O C ) |
83 |
6
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> D e. ran L ) |
84 |
7
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> G e. TarskiG ) |
85 |
9
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A e. P ) |
86 |
10
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> B e. P ) |
87 |
11
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> C e. P ) |
88 |
12
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> R e. D ) |
89 |
13
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A O C ) |
90 |
14
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> M e. D ) |
91 |
15
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A = ( S ` C ) ) |
92 |
16
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A =/= R ) |
93 |
17
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> B =/= R ) |
94 |
|
simpr |
|- ( ( ph /\ B e. ( R I A ) ) -> B e. ( R I A ) ) |
95 |
1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94
|
opphllem1 |
|- ( ( ph /\ B e. ( R I A ) ) -> B O C ) |
96 |
82 95 18
|
mpjaodan |
|- ( ph -> B O C ) |