| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
opphl.l |
|- L = ( LineG ` G ) |
| 6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
| 7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
opphllem1.s |
|- S = ( ( pInvG ` G ) ` M ) |
| 9 |
|
opphllem1.a |
|- ( ph -> A e. P ) |
| 10 |
|
opphllem1.b |
|- ( ph -> B e. P ) |
| 11 |
|
opphllem1.c |
|- ( ph -> C e. P ) |
| 12 |
|
opphllem1.r |
|- ( ph -> R e. D ) |
| 13 |
|
opphllem1.o |
|- ( ph -> A O C ) |
| 14 |
|
opphllem1.m |
|- ( ph -> M e. D ) |
| 15 |
|
opphllem1.n |
|- ( ph -> A = ( S ` C ) ) |
| 16 |
|
opphllem1.x |
|- ( ph -> A =/= R ) |
| 17 |
|
opphllem1.y |
|- ( ph -> B =/= R ) |
| 18 |
|
opphllem2.z |
|- ( ph -> ( A e. ( R I B ) \/ B e. ( R I A ) ) ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> D e. ran L ) |
| 20 |
7
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> G e. TarskiG ) |
| 21 |
11
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> C e. P ) |
| 22 |
10
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> B e. P ) |
| 23 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 24 |
1 5 3 7 6 14
|
tglnpt |
|- ( ph -> M e. P ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> M e. P ) |
| 26 |
1 2 3 5 23 20 25 8 22
|
mircl |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) e. P ) |
| 27 |
14
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> M e. D ) |
| 28 |
12
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> R e. D ) |
| 29 |
1 2 3 5 23 20 8 19 27 28
|
mirln |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) e. D ) |
| 30 |
|
simpr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> A = B ) |
| 31 |
|
simplr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> B e. D ) |
| 32 |
30 31
|
eqeltrd |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A = B ) -> A e. D ) |
| 33 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> G e. TarskiG ) |
| 34 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B e. P ) |
| 35 |
1 5 3 7 6 12
|
tglnpt |
|- ( ph -> R e. P ) |
| 36 |
35
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R e. P ) |
| 37 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. P ) |
| 38 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B =/= R ) |
| 39 |
38
|
necomd |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R =/= B ) |
| 40 |
|
simpllr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( R I B ) ) |
| 41 |
1 3 5 33 36 34 37 39 40
|
btwnlng1 |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( R L B ) ) |
| 42 |
1 3 5 33 34 36 37 38 41
|
lncom |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. ( B L R ) ) |
| 43 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> D e. ran L ) |
| 44 |
|
simplr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> B e. D ) |
| 45 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> R e. D ) |
| 46 |
1 3 5 33 34 36 38 38 43 44 45
|
tglinethru |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> D = ( B L R ) ) |
| 47 |
42 46
|
eleqtrrd |
|- ( ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) /\ A =/= B ) -> A e. D ) |
| 48 |
32 47
|
pm2.61dane |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) -> A e. D ) |
| 49 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
|- ( ph -> -. A e. D ) |
| 50 |
49
|
ad2antrr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ B e. D ) -> -. A e. D ) |
| 51 |
48 50
|
pm2.65da |
|- ( ( ph /\ A e. ( R I B ) ) -> -. B e. D ) |
| 52 |
20
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> G e. TarskiG ) |
| 53 |
25
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> M e. P ) |
| 54 |
22
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> B e. P ) |
| 55 |
1 2 3 5 23 52 53 8 54
|
mirmir |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` ( S ` B ) ) = B ) |
| 56 |
19
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> D e. ran L ) |
| 57 |
27
|
adantr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> M e. D ) |
| 58 |
|
simpr |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` B ) e. D ) |
| 59 |
1 2 3 5 23 52 8 56 57 58
|
mirln |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> ( S ` ( S ` B ) ) e. D ) |
| 60 |
55 59
|
eqeltrrd |
|- ( ( ( ph /\ A e. ( R I B ) ) /\ ( S ` B ) e. D ) -> B e. D ) |
| 61 |
51 60
|
mtand |
|- ( ( ph /\ A e. ( R I B ) ) -> -. ( S ` B ) e. D ) |
| 62 |
1 2 3 5 23 20 25 8 22
|
mirbtwn |
|- ( ( ph /\ A e. ( R I B ) ) -> M e. ( ( S ` B ) I B ) ) |
| 63 |
1 2 3 4 26 22 27 61 51 62
|
islnoppd |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) O B ) |
| 64 |
|
eqidd |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) = ( S ` B ) ) |
| 65 |
|
nelne2 |
|- ( ( ( S ` R ) e. D /\ -. ( S ` B ) e. D ) -> ( S ` R ) =/= ( S ` B ) ) |
| 66 |
29 61 65
|
syl2anc |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) =/= ( S ` B ) ) |
| 67 |
66
|
necomd |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` B ) =/= ( S ` R ) ) |
| 68 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
|- ( ph -> -. C e. D ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> -. C e. D ) |
| 70 |
|
nelne2 |
|- ( ( ( S ` R ) e. D /\ -. C e. D ) -> ( S ` R ) =/= C ) |
| 71 |
29 69 70
|
syl2anc |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` R ) =/= C ) |
| 72 |
71
|
necomd |
|- ( ( ph /\ A e. ( R I B ) ) -> C =/= ( S ` R ) ) |
| 73 |
15
|
eqcomd |
|- ( ph -> ( S ` C ) = A ) |
| 74 |
1 2 3 5 23 7 24 8 11 73
|
mircom |
|- ( ph -> ( S ` A ) = C ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` A ) = C ) |
| 76 |
35
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> R e. P ) |
| 77 |
9
|
adantr |
|- ( ( ph /\ A e. ( R I B ) ) -> A e. P ) |
| 78 |
|
simpr |
|- ( ( ph /\ A e. ( R I B ) ) -> A e. ( R I B ) ) |
| 79 |
1 2 3 5 23 20 25 8 76 77 22 78
|
mirbtwni |
|- ( ( ph /\ A e. ( R I B ) ) -> ( S ` A ) e. ( ( S ` R ) I ( S ` B ) ) ) |
| 80 |
75 79
|
eqeltrrd |
|- ( ( ph /\ A e. ( R I B ) ) -> C e. ( ( S ` R ) I ( S ` B ) ) ) |
| 81 |
1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80
|
opphllem1 |
|- ( ( ph /\ A e. ( R I B ) ) -> C O B ) |
| 82 |
1 2 3 4 5 19 20 21 22 81
|
oppcom |
|- ( ( ph /\ A e. ( R I B ) ) -> B O C ) |
| 83 |
6
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> D e. ran L ) |
| 84 |
7
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> G e. TarskiG ) |
| 85 |
9
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A e. P ) |
| 86 |
10
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> B e. P ) |
| 87 |
11
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> C e. P ) |
| 88 |
12
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> R e. D ) |
| 89 |
13
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A O C ) |
| 90 |
14
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> M e. D ) |
| 91 |
15
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A = ( S ` C ) ) |
| 92 |
16
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> A =/= R ) |
| 93 |
17
|
adantr |
|- ( ( ph /\ B e. ( R I A ) ) -> B =/= R ) |
| 94 |
|
simpr |
|- ( ( ph /\ B e. ( R I A ) ) -> B e. ( R I A ) ) |
| 95 |
1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94
|
opphllem1 |
|- ( ( ph /\ B e. ( R I A ) ) -> B O C ) |
| 96 |
82 95 18
|
mpjaodan |
|- ( ph -> B O C ) |