Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
opphl.l |
|- L = ( LineG ` G ) |
6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
8 |
|
opphl.k |
|- K = ( hlG ` G ) |
9 |
|
opphllem5.n |
|- N = ( ( pInvG ` G ) ` M ) |
10 |
|
opphllem5.a |
|- ( ph -> A e. P ) |
11 |
|
opphllem5.c |
|- ( ph -> C e. P ) |
12 |
|
opphllem5.r |
|- ( ph -> R e. D ) |
13 |
|
opphllem5.s |
|- ( ph -> S e. D ) |
14 |
|
opphllem5.m |
|- ( ph -> M e. P ) |
15 |
|
opphllem5.o |
|- ( ph -> A O C ) |
16 |
|
opphllem5.p |
|- ( ph -> D ( perpG ` G ) ( A L R ) ) |
17 |
|
opphllem5.q |
|- ( ph -> D ( perpG ` G ) ( C L S ) ) |
18 |
|
opphllem3.t |
|- ( ph -> R =/= S ) |
19 |
|
opphllem3.l |
|- ( ph -> ( S .- C ) ( leG ` G ) ( R .- A ) ) |
20 |
|
opphllem3.u |
|- ( ph -> U e. P ) |
21 |
|
opphllem3.v |
|- ( ph -> ( N ` R ) = S ) |
22 |
|
opphllem4.u |
|- ( ph -> V e. P ) |
23 |
|
opphllem4.1 |
|- ( ph -> U ( K ` R ) A ) |
24 |
|
opphllem4.2 |
|- ( ph -> V ( K ` S ) C ) |
25 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
26 |
1 2 3 5 25 7 14 9 20
|
mircl |
|- ( ph -> ( N ` U ) e. P ) |
27 |
1 5 3 7 6 13
|
tglnpt |
|- ( ph -> S e. P ) |
28 |
1 5 3 7 6 12
|
tglnpt |
|- ( ph -> R e. P ) |
29 |
18
|
necomd |
|- ( ph -> S =/= R ) |
30 |
1 2 3 5 25 7 14 9 28
|
mirbtwn |
|- ( ph -> M e. ( ( N ` R ) I R ) ) |
31 |
21
|
oveq1d |
|- ( ph -> ( ( N ` R ) I R ) = ( S I R ) ) |
32 |
30 31
|
eleqtrd |
|- ( ph -> M e. ( S I R ) ) |
33 |
1 3 5 7 27 28 14 29 32
|
btwnlng1 |
|- ( ph -> M e. ( S L R ) ) |
34 |
1 3 5 7 27 28 29 29 6 13 12
|
tglinethru |
|- ( ph -> D = ( S L R ) ) |
35 |
33 34
|
eleqtrrd |
|- ( ph -> M e. D ) |
36 |
1 2 3 4 5 6 7 10 11 15
|
oppne1 |
|- ( ph -> -. A e. D ) |
37 |
1 3 8 20 10 28 7 23
|
hlne1 |
|- ( ph -> U =/= R ) |
38 |
37
|
necomd |
|- ( ph -> R =/= U ) |
39 |
1 3 8 20 10 28 7 5 23
|
hlln |
|- ( ph -> U e. ( A L R ) ) |
40 |
1 3 8 20 10 28 7 23
|
hlne2 |
|- ( ph -> A =/= R ) |
41 |
1 3 5 7 28 20 10 38 39 40
|
lnrot1 |
|- ( ph -> A e. ( R L U ) ) |
42 |
41
|
adantr |
|- ( ( ph /\ U e. D ) -> A e. ( R L U ) ) |
43 |
7
|
adantr |
|- ( ( ph /\ U e. D ) -> G e. TarskiG ) |
44 |
28
|
adantr |
|- ( ( ph /\ U e. D ) -> R e. P ) |
45 |
20
|
adantr |
|- ( ( ph /\ U e. D ) -> U e. P ) |
46 |
38
|
adantr |
|- ( ( ph /\ U e. D ) -> R =/= U ) |
47 |
6
|
adantr |
|- ( ( ph /\ U e. D ) -> D e. ran L ) |
48 |
12
|
adantr |
|- ( ( ph /\ U e. D ) -> R e. D ) |
49 |
|
simpr |
|- ( ( ph /\ U e. D ) -> U e. D ) |
50 |
1 3 5 43 44 45 46 46 47 48 49
|
tglinethru |
|- ( ( ph /\ U e. D ) -> D = ( R L U ) ) |
51 |
42 50
|
eleqtrrd |
|- ( ( ph /\ U e. D ) -> A e. D ) |
52 |
36 51
|
mtand |
|- ( ph -> -. U e. D ) |
53 |
7
|
adantr |
|- ( ( ph /\ ( N ` U ) e. D ) -> G e. TarskiG ) |
54 |
14
|
adantr |
|- ( ( ph /\ ( N ` U ) e. D ) -> M e. P ) |
55 |
20
|
adantr |
|- ( ( ph /\ ( N ` U ) e. D ) -> U e. P ) |
56 |
1 2 3 5 25 53 54 9 55
|
mirmir |
|- ( ( ph /\ ( N ` U ) e. D ) -> ( N ` ( N ` U ) ) = U ) |
57 |
6
|
adantr |
|- ( ( ph /\ ( N ` U ) e. D ) -> D e. ran L ) |
58 |
35
|
adantr |
|- ( ( ph /\ ( N ` U ) e. D ) -> M e. D ) |
59 |
|
simpr |
|- ( ( ph /\ ( N ` U ) e. D ) -> ( N ` U ) e. D ) |
60 |
1 2 3 5 25 53 9 57 58 59
|
mirln |
|- ( ( ph /\ ( N ` U ) e. D ) -> ( N ` ( N ` U ) ) e. D ) |
61 |
56 60
|
eqeltrrd |
|- ( ( ph /\ ( N ` U ) e. D ) -> U e. D ) |
62 |
52 61
|
mtand |
|- ( ph -> -. ( N ` U ) e. D ) |
63 |
1 2 3 5 25 7 14 9 20
|
mirbtwn |
|- ( ph -> M e. ( ( N ` U ) I U ) ) |
64 |
1 2 3 4 26 20 35 62 52 63
|
islnoppd |
|- ( ph -> ( N ` U ) O U ) |
65 |
|
eqidd |
|- ( ph -> ( N ` U ) = ( N ` U ) ) |
66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
opphllem3 |
|- ( ph -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) |
67 |
23 66
|
mpbid |
|- ( ph -> ( N ` U ) ( K ` S ) C ) |
68 |
1 3 8 22 11 27 7 24
|
hlcomd |
|- ( ph -> C ( K ` S ) V ) |
69 |
1 3 8 26 11 22 7 27 67 68
|
hltr |
|- ( ph -> ( N ` U ) ( K ` S ) V ) |
70 |
1 3 8 26 22 27 7
|
ishlg |
|- ( ph -> ( ( N ` U ) ( K ` S ) V <-> ( ( N ` U ) =/= S /\ V =/= S /\ ( ( N ` U ) e. ( S I V ) \/ V e. ( S I ( N ` U ) ) ) ) ) ) |
71 |
69 70
|
mpbid |
|- ( ph -> ( ( N ` U ) =/= S /\ V =/= S /\ ( ( N ` U ) e. ( S I V ) \/ V e. ( S I ( N ` U ) ) ) ) ) |
72 |
71
|
simp1d |
|- ( ph -> ( N ` U ) =/= S ) |
73 |
1 3 8 11 22 27 7 68
|
hlne2 |
|- ( ph -> V =/= S ) |
74 |
71
|
simp3d |
|- ( ph -> ( ( N ` U ) e. ( S I V ) \/ V e. ( S I ( N ` U ) ) ) ) |
75 |
1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74
|
opphllem2 |
|- ( ph -> V O U ) |
76 |
1 2 3 4 5 6 7 22 20 75
|
oppcom |
|- ( ph -> U O V ) |