Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
opphl.l |
|- L = ( LineG ` G ) |
6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
8 |
|
opphl.k |
|- K = ( hlG ` G ) |
9 |
|
opphllem5.n |
|- N = ( ( pInvG ` G ) ` M ) |
10 |
|
opphllem5.a |
|- ( ph -> A e. P ) |
11 |
|
opphllem5.c |
|- ( ph -> C e. P ) |
12 |
|
opphllem5.r |
|- ( ph -> R e. D ) |
13 |
|
opphllem5.s |
|- ( ph -> S e. D ) |
14 |
|
opphllem5.m |
|- ( ph -> M e. P ) |
15 |
|
opphllem5.o |
|- ( ph -> A O C ) |
16 |
|
opphllem5.p |
|- ( ph -> D ( perpG ` G ) ( A L R ) ) |
17 |
|
opphllem5.q |
|- ( ph -> D ( perpG ` G ) ( C L S ) ) |
18 |
|
opphllem5.u |
|- ( ph -> U e. P ) |
19 |
|
opphllem5.v |
|- ( ph -> V e. P ) |
20 |
|
opphllem5.1 |
|- ( ph -> U ( K ` R ) A ) |
21 |
|
opphllem5.2 |
|- ( ph -> V ( K ` S ) C ) |
22 |
1 5 3 7 6 12
|
tglnpt |
|- ( ph -> R e. P ) |
23 |
1 3 8 18 10 22 7 20
|
hlne2 |
|- ( ph -> A =/= R ) |
24 |
1 3 5 7 10 22 23
|
tglinecom |
|- ( ph -> ( A L R ) = ( R L A ) ) |
25 |
16 24
|
breqtrd |
|- ( ph -> D ( perpG ` G ) ( R L A ) ) |
26 |
1 3 8 18 10 22 7 20
|
hlcomd |
|- ( ph -> A ( K ` R ) U ) |
27 |
1 2 3 5 7 6 8 12 10 18 25 26
|
hlperpnel |
|- ( ph -> -. U e. D ) |
28 |
27
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> -. U e. D ) |
29 |
1 5 3 7 6 13
|
tglnpt |
|- ( ph -> S e. P ) |
30 |
1 3 8 19 11 29 7 21
|
hlne2 |
|- ( ph -> C =/= S ) |
31 |
1 3 5 7 11 29 30
|
tglinecom |
|- ( ph -> ( C L S ) = ( S L C ) ) |
32 |
17 31
|
breqtrd |
|- ( ph -> D ( perpG ` G ) ( S L C ) ) |
33 |
1 3 8 19 11 29 7 21
|
hlcomd |
|- ( ph -> C ( K ` S ) V ) |
34 |
1 2 3 5 7 6 8 13 11 19 32 33
|
hlperpnel |
|- ( ph -> -. V e. D ) |
35 |
34
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> -. V e. D ) |
36 |
|
simplr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. D ) |
37 |
|
simpr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R = t ) -> R = t ) |
38 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
39 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> G e. TarskiG ) |
40 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> C e. P ) |
41 |
22
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. P ) |
42 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> G e. TarskiG ) |
43 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> D e. ran L ) |
44 |
1 5 3 42 43 36
|
tglnpt |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. P ) |
45 |
44
|
adantr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. P ) |
46 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> A e. P ) |
47 |
29
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> S e. P ) |
48 |
|
simpllr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = S ) |
49 |
1 3 5 7 11 29 30
|
tglinerflx2 |
|- ( ph -> S e. ( C L S ) ) |
50 |
49
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> S e. ( C L S ) ) |
51 |
48 50
|
eqeltrd |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( C L S ) ) |
52 |
51
|
adantr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( C L S ) ) |
53 |
5 7 17
|
perpln2 |
|- ( ph -> ( C L S ) e. ran L ) |
54 |
1 2 3 5 7 6 53 17
|
perpcom |
|- ( ph -> ( C L S ) ( perpG ` G ) D ) |
55 |
54
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) D ) |
56 |
|
simpr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R =/= t ) |
57 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D e. ran L ) |
58 |
12
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. D ) |
59 |
|
simpllr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. D ) |
60 |
1 3 5 39 41 45 56 56 57 58 59
|
tglinethru |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D = ( R L t ) ) |
61 |
55 60
|
breqtrd |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) ( R L t ) ) |
62 |
1 2 3 5 39 40 47 52 45 61
|
perprag |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" C R t "> e. ( raG ` G ) ) |
63 |
1 3 5 7 10 22 23
|
tglinerflx2 |
|- ( ph -> R e. ( A L R ) ) |
64 |
63
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( A L R ) ) |
65 |
5 7 16
|
perpln2 |
|- ( ph -> ( A L R ) e. ran L ) |
66 |
1 2 3 5 7 6 65 16
|
perpcom |
|- ( ph -> ( A L R ) ( perpG ` G ) D ) |
67 |
66
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) D ) |
68 |
67 60
|
breqtrd |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) ( R L t ) ) |
69 |
1 2 3 5 39 46 41 64 45 68
|
perprag |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" A R t "> e. ( raG ` G ) ) |
70 |
|
simplr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( A I C ) ) |
71 |
1 2 3 39 46 45 40 70
|
tgbtwncom |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( C I A ) ) |
72 |
1 2 3 5 38 39 40 41 45 46 62 69 71
|
ragflat2 |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R = t ) |
73 |
37 72
|
pm2.61dane |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = t ) |
74 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> A e. P ) |
75 |
18
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> U e. P ) |
76 |
19
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> V e. P ) |
77 |
22
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. P ) |
78 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> A ( K ` R ) U ) |
79 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> C e. P ) |
80 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> V ( K ` S ) C ) |
81 |
48
|
fveq2d |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( K ` R ) = ( K ` S ) ) |
82 |
81
|
breqd |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( V ( K ` R ) C <-> V ( K ` S ) C ) ) |
83 |
80 82
|
mpbird |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> V ( K ` R ) C ) |
84 |
1 3 8 76 79 77 42 83
|
hlcomd |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> C ( K ` R ) V ) |
85 |
|
simpr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. ( A I C ) ) |
86 |
73 85
|
eqeltrd |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( A I C ) ) |
87 |
1 2 3 42 74 77 79 86
|
tgbtwncom |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( C I A ) ) |
88 |
1 3 8 79 76 74 42 77 84 87
|
btwnhl |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( V I A ) ) |
89 |
1 2 3 42 76 77 74 88
|
tgbtwncom |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( A I V ) ) |
90 |
1 3 8 74 75 76 42 77 78 89
|
btwnhl |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( U I V ) ) |
91 |
73 90
|
eqeltrrd |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. ( U I V ) ) |
92 |
|
rspe |
|- ( ( t e. D /\ t e. ( U I V ) ) -> E. t e. D t e. ( U I V ) ) |
93 |
36 91 92
|
syl2anc |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> E. t e. D t e. ( U I V ) ) |
94 |
28 35 93
|
jca31 |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( ( -. U e. D /\ -. V e. D ) /\ E. t e. D t e. ( U I V ) ) ) |
95 |
1 2 3 4 18 19
|
islnopp |
|- ( ph -> ( U O V <-> ( ( -. U e. D /\ -. V e. D ) /\ E. t e. D t e. ( U I V ) ) ) ) |
96 |
95
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> ( U O V <-> ( ( -. U e. D /\ -. V e. D ) /\ E. t e. D t e. ( U I V ) ) ) ) |
97 |
94 96
|
mpbird |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> U O V ) |
98 |
1 2 3 4 10 11
|
islnopp |
|- ( ph -> ( A O C <-> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) ) |
99 |
15 98
|
mpbid |
|- ( ph -> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) |
100 |
99
|
simprd |
|- ( ph -> E. t e. D t e. ( A I C ) ) |
101 |
100
|
adantr |
|- ( ( ph /\ R = S ) -> E. t e. D t e. ( A I C ) ) |
102 |
97 101
|
r19.29a |
|- ( ( ph /\ R = S ) -> U O V ) |
103 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D e. ran L ) |
104 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> G e. TarskiG ) |
105 |
|
eqid |
|- ( ( pInvG ` G ) ` m ) = ( ( pInvG ` G ) ` m ) |
106 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A e. P ) |
107 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> C e. P ) |
108 |
12
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R e. D ) |
109 |
13
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> S e. D ) |
110 |
|
simpllr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> m e. P ) |
111 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A O C ) |
112 |
16
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( A L R ) ) |
113 |
17
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( C L S ) ) |
114 |
|
simpr |
|- ( ( ph /\ R =/= S ) -> R =/= S ) |
115 |
114
|
ad3antrrr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R =/= S ) |
116 |
|
simpr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( S .- C ) ( leG ` G ) ( R .- A ) ) |
117 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U e. P ) |
118 |
|
simplr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> S = ( ( ( pInvG ` G ) ` m ) ` R ) ) |
119 |
118
|
eqcomd |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( ( ( pInvG ` G ) ` m ) ` R ) = S ) |
120 |
19
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> V e. P ) |
121 |
20
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U ( K ` R ) A ) |
122 |
21
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> V ( K ` S ) C ) |
123 |
1 2 3 4 5 103 104 8 105 106 107 108 109 110 111 112 113 115 116 117 119 120 121 122
|
opphllem4 |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U O V ) |
124 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D e. ran L ) |
125 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> G e. TarskiG ) |
126 |
19
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> V e. P ) |
127 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U e. P ) |
128 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C e. P ) |
129 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A e. P ) |
130 |
13
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S e. D ) |
131 |
12
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. D ) |
132 |
|
simpllr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> m e. P ) |
133 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A O C ) |
134 |
1 2 3 4 5 124 125 129 128 133
|
oppcom |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C O A ) |
135 |
17
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( C L S ) ) |
136 |
16
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( A L R ) ) |
137 |
114
|
necomd |
|- ( ( ph /\ R =/= S ) -> S =/= R ) |
138 |
137
|
ad3antrrr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S =/= R ) |
139 |
|
simpr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( R .- A ) ( leG ` G ) ( S .- C ) ) |
140 |
22
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. P ) |
141 |
|
simplr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S = ( ( ( pInvG ` G ) ` m ) ` R ) ) |
142 |
141
|
eqcomd |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( ( pInvG ` G ) ` m ) ` R ) = S ) |
143 |
1 2 3 5 38 125 132 105 140 142
|
mircom |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( ( pInvG ` G ) ` m ) ` S ) = R ) |
144 |
21
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> V ( K ` S ) C ) |
145 |
20
|
ad4antr |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U ( K ` R ) A ) |
146 |
1 2 3 4 5 124 125 8 105 128 129 130 131 132 134 135 136 138 139 126 143 127 144 145
|
opphllem4 |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> V O U ) |
147 |
1 2 3 4 5 124 125 126 127 146
|
oppcom |
|- ( ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U O V ) |
148 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
149 |
1 2 3 148 7 29 11 22 10
|
legtrid |
|- ( ph -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) |
150 |
149
|
ad3antrrr |
|- ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) |
151 |
123 147 150
|
mpjaodan |
|- ( ( ( ( ph /\ R =/= S ) /\ m e. P ) /\ S = ( ( ( pInvG ` G ) ` m ) ` R ) ) -> U O V ) |
152 |
7
|
adantr |
|- ( ( ph /\ R =/= S ) -> G e. TarskiG ) |
153 |
22
|
adantr |
|- ( ( ph /\ R =/= S ) -> R e. P ) |
154 |
29
|
adantr |
|- ( ( ph /\ R =/= S ) -> S e. P ) |
155 |
1 2 3 4 5 6 7 10 11 15
|
opptgdim2 |
|- ( ph -> G TarskiGDim>= 2 ) |
156 |
155
|
adantr |
|- ( ( ph /\ R =/= S ) -> G TarskiGDim>= 2 ) |
157 |
1 2 3 5 152 38 153 154 156
|
midex |
|- ( ( ph /\ R =/= S ) -> E. m e. P S = ( ( ( pInvG ` G ) ` m ) ` R ) ) |
158 |
151 157
|
r19.29a |
|- ( ( ph /\ R =/= S ) -> U O V ) |
159 |
102 158
|
pm2.61dane |
|- ( ph -> U O V ) |