Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
opphl.l |
|- L = ( LineG ` G ) |
6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
8 |
|
opphl.k |
|- K = ( hlG ` G ) |
9 |
|
opphllem5.n |
|- N = ( ( pInvG ` G ) ` M ) |
10 |
|
opphllem5.a |
|- ( ph -> A e. P ) |
11 |
|
opphllem5.c |
|- ( ph -> C e. P ) |
12 |
|
opphllem5.r |
|- ( ph -> R e. D ) |
13 |
|
opphllem5.s |
|- ( ph -> S e. D ) |
14 |
|
opphllem5.m |
|- ( ph -> M e. P ) |
15 |
|
opphllem5.o |
|- ( ph -> A O C ) |
16 |
|
opphllem5.p |
|- ( ph -> D ( perpG ` G ) ( A L R ) ) |
17 |
|
opphllem5.q |
|- ( ph -> D ( perpG ` G ) ( C L S ) ) |
18 |
|
opphllem5.u |
|- ( ph -> U e. P ) |
19 |
|
opphllem6.v |
|- ( ph -> ( N ` R ) = S ) |
20 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
21 |
7
|
adantr |
|- ( ( ph /\ R = S ) -> G e. TarskiG ) |
22 |
14
|
adantr |
|- ( ( ph /\ R = S ) -> M e. P ) |
23 |
10
|
adantr |
|- ( ( ph /\ R = S ) -> A e. P ) |
24 |
11
|
adantr |
|- ( ( ph /\ R = S ) -> C e. P ) |
25 |
18
|
adantr |
|- ( ( ph /\ R = S ) -> U e. P ) |
26 |
1 5 3 7 6 12
|
tglnpt |
|- ( ph -> R e. P ) |
27 |
5 7 16
|
perpln2 |
|- ( ph -> ( A L R ) e. ran L ) |
28 |
1 3 5 7 10 26 27
|
tglnne |
|- ( ph -> A =/= R ) |
29 |
28
|
adantr |
|- ( ( ph /\ R = S ) -> A =/= R ) |
30 |
19
|
adantr |
|- ( ( ph /\ R = S ) -> ( N ` R ) = S ) |
31 |
|
simpr |
|- ( ( ph /\ R = S ) -> R = S ) |
32 |
30 31
|
eqtr4d |
|- ( ( ph /\ R = S ) -> ( N ` R ) = R ) |
33 |
1 2 3 5 20 7 14 9 26
|
mirinv |
|- ( ph -> ( ( N ` R ) = R <-> M = R ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ R = S ) -> ( ( N ` R ) = R <-> M = R ) ) |
35 |
32 34
|
mpbid |
|- ( ( ph /\ R = S ) -> M = R ) |
36 |
29 35
|
neeqtrrd |
|- ( ( ph /\ R = S ) -> A =/= M ) |
37 |
1 5 3 7 6 13
|
tglnpt |
|- ( ph -> S e. P ) |
38 |
5 7 17
|
perpln2 |
|- ( ph -> ( C L S ) e. ran L ) |
39 |
1 3 5 7 11 37 38
|
tglnne |
|- ( ph -> C =/= S ) |
40 |
39
|
adantr |
|- ( ( ph /\ R = S ) -> C =/= S ) |
41 |
35 31
|
eqtrd |
|- ( ( ph /\ R = S ) -> M = S ) |
42 |
40 41
|
neeqtrrd |
|- ( ( ph /\ R = S ) -> C =/= M ) |
43 |
|
simpr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R = t ) -> R = t ) |
44 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> G e. TarskiG ) |
45 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> C e. P ) |
46 |
26
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. P ) |
47 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> G e. TarskiG ) |
48 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> D e. ran L ) |
49 |
|
simplr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. D ) |
50 |
1 5 3 47 48 49
|
tglnpt |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. P ) |
51 |
50
|
adantr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. P ) |
52 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> A e. P ) |
53 |
37
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> S e. P ) |
54 |
|
simpllr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = S ) |
55 |
1 3 5 7 11 37 39
|
tglinerflx2 |
|- ( ph -> S e. ( C L S ) ) |
56 |
55
|
ad3antrrr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> S e. ( C L S ) ) |
57 |
54 56
|
eqeltrd |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( C L S ) ) |
58 |
57
|
adantr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( C L S ) ) |
59 |
1 2 3 5 7 6 38 17
|
perpcom |
|- ( ph -> ( C L S ) ( perpG ` G ) D ) |
60 |
59
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) D ) |
61 |
|
simpr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R =/= t ) |
62 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D e. ran L ) |
63 |
12
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. D ) |
64 |
|
simpllr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. D ) |
65 |
1 3 5 44 46 51 61 61 62 63 64
|
tglinethru |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D = ( R L t ) ) |
66 |
60 65
|
breqtrd |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) ( R L t ) ) |
67 |
1 2 3 5 44 45 53 58 51 66
|
perprag |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" C R t "> e. ( raG ` G ) ) |
68 |
1 3 5 7 10 26 28
|
tglinerflx2 |
|- ( ph -> R e. ( A L R ) ) |
69 |
68
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( A L R ) ) |
70 |
1 2 3 5 7 6 27 16
|
perpcom |
|- ( ph -> ( A L R ) ( perpG ` G ) D ) |
71 |
70
|
ad4antr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) D ) |
72 |
71 65
|
breqtrd |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) ( R L t ) ) |
73 |
1 2 3 5 44 52 46 69 51 72
|
perprag |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" A R t "> e. ( raG ` G ) ) |
74 |
|
simplr |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( A I C ) ) |
75 |
1 2 3 44 52 51 45 74
|
tgbtwncom |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( C I A ) ) |
76 |
1 2 3 5 20 44 45 46 51 52 67 73 75
|
ragflat2 |
|- ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R = t ) |
77 |
43 76
|
pm2.61dane |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = t ) |
78 |
|
simpr |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. ( A I C ) ) |
79 |
77 78
|
eqeltrd |
|- ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( A I C ) ) |
80 |
1 2 3 4 10 11
|
islnopp |
|- ( ph -> ( A O C <-> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) ) |
81 |
15 80
|
mpbid |
|- ( ph -> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) |
82 |
81
|
simprd |
|- ( ph -> E. t e. D t e. ( A I C ) ) |
83 |
82
|
adantr |
|- ( ( ph /\ R = S ) -> E. t e. D t e. ( A I C ) ) |
84 |
79 83
|
r19.29a |
|- ( ( ph /\ R = S ) -> R e. ( A I C ) ) |
85 |
35 84
|
eqeltrd |
|- ( ( ph /\ R = S ) -> M e. ( A I C ) ) |
86 |
1 2 3 5 20 21 9 8 22 23 24 25 36 42 85
|
mirbtwnhl |
|- ( ( ph /\ R = S ) -> ( U ( K ` M ) A <-> ( N ` U ) ( K ` M ) C ) ) |
87 |
35
|
fveq2d |
|- ( ( ph /\ R = S ) -> ( K ` M ) = ( K ` R ) ) |
88 |
87
|
breqd |
|- ( ( ph /\ R = S ) -> ( U ( K ` M ) A <-> U ( K ` R ) A ) ) |
89 |
41
|
fveq2d |
|- ( ( ph /\ R = S ) -> ( K ` M ) = ( K ` S ) ) |
90 |
89
|
breqd |
|- ( ( ph /\ R = S ) -> ( ( N ` U ) ( K ` M ) C <-> ( N ` U ) ( K ` S ) C ) ) |
91 |
86 88 90
|
3bitr3d |
|- ( ( ph /\ R = S ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) |
92 |
6
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D e. ran L ) |
93 |
7
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> G e. TarskiG ) |
94 |
10
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A e. P ) |
95 |
11
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> C e. P ) |
96 |
12
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R e. D ) |
97 |
13
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> S e. D ) |
98 |
14
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> M e. P ) |
99 |
15
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A O C ) |
100 |
16
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( A L R ) ) |
101 |
17
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( C L S ) ) |
102 |
|
simplr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R =/= S ) |
103 |
|
simpr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( S .- C ) ( leG ` G ) ( R .- A ) ) |
104 |
18
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U e. P ) |
105 |
19
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( N ` R ) = S ) |
106 |
1 2 3 4 5 92 93 8 9 94 95 96 97 98 99 100 101 102 103 104 105
|
opphllem3 |
|- ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) |
107 |
6
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D e. ran L ) |
108 |
7
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> G e. TarskiG ) |
109 |
11
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C e. P ) |
110 |
10
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A e. P ) |
111 |
13
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S e. D ) |
112 |
12
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. D ) |
113 |
14
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> M e. P ) |
114 |
15
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A O C ) |
115 |
1 2 3 4 5 107 108 110 109 114
|
oppcom |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C O A ) |
116 |
17
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( C L S ) ) |
117 |
16
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( A L R ) ) |
118 |
|
simpr |
|- ( ( ph /\ R =/= S ) -> R =/= S ) |
119 |
118
|
necomd |
|- ( ( ph /\ R =/= S ) -> S =/= R ) |
120 |
119
|
adantr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S =/= R ) |
121 |
|
simpr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( R .- A ) ( leG ` G ) ( S .- C ) ) |
122 |
18
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U e. P ) |
123 |
1 2 3 5 20 108 113 9 122
|
mircl |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` U ) e. P ) |
124 |
26
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. P ) |
125 |
19
|
ad2antrr |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` R ) = S ) |
126 |
1 2 3 5 20 108 113 9 124 125
|
mircom |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` S ) = R ) |
127 |
1 2 3 4 5 107 108 8 9 109 110 111 112 113 115 116 117 120 121 123 126
|
opphllem3 |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( N ` U ) ( K ` S ) C <-> ( N ` ( N ` U ) ) ( K ` R ) A ) ) |
128 |
1 2 3 5 20 108 113 9 122
|
mirmir |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` ( N ` U ) ) = U ) |
129 |
128
|
breq1d |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( N ` ( N ` U ) ) ( K ` R ) A <-> U ( K ` R ) A ) ) |
130 |
127 129
|
bitr2d |
|- ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) |
131 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
132 |
1 2 3 131 7 37 11 26 10
|
legtrid |
|- ( ph -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) |
133 |
132
|
adantr |
|- ( ( ph /\ R =/= S ) -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) |
134 |
106 130 133
|
mpjaodan |
|- ( ( ph /\ R =/= S ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) |
135 |
91 134
|
pm2.61dane |
|- ( ph -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) |