Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hpg.p | |- P = ( Base ` G ) |
|
hpg.d | |- .- = ( dist ` G ) |
||
hpg.i | |- I = ( Itv ` G ) |
||
hpg.o | |- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
||
opphl.l | |- L = ( LineG ` G ) |
||
opphl.d | |- ( ph -> D e. ran L ) |
||
opphl.g | |- ( ph -> G e. TarskiG ) |
||
oppcom.a | |- ( ph -> A e. P ) |
||
oppcom.b | |- ( ph -> B e. P ) |
||
oppcom.o | |- ( ph -> A O B ) |
||
Assertion | oppne2 | |- ( ph -> -. B e. D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | |- P = ( Base ` G ) |
|
2 | hpg.d | |- .- = ( dist ` G ) |
|
3 | hpg.i | |- I = ( Itv ` G ) |
|
4 | hpg.o | |- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
|
5 | opphl.l | |- L = ( LineG ` G ) |
|
6 | opphl.d | |- ( ph -> D e. ran L ) |
|
7 | opphl.g | |- ( ph -> G e. TarskiG ) |
|
8 | oppcom.a | |- ( ph -> A e. P ) |
|
9 | oppcom.b | |- ( ph -> B e. P ) |
|
10 | oppcom.o | |- ( ph -> A O B ) |
|
11 | 1 2 3 4 8 9 | islnopp | |- ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) ) |
12 | 10 11 | mpbid | |- ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) |
13 | 12 | simplrd | |- ( ph -> -. B e. D ) |