| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
opphl.l |
|- L = ( LineG ` G ) |
| 6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
| 7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
oppcom.a |
|- ( ph -> A e. P ) |
| 9 |
|
oppcom.b |
|- ( ph -> B e. P ) |
| 10 |
|
oppcom.o |
|- ( ph -> A O B ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
oppne1 |
|- ( ph -> -. A e. D ) |
| 12 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> G e. TarskiG ) |
| 13 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A e. P ) |
| 14 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> D e. ran L ) |
| 15 |
|
simplr |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. D ) |
| 16 |
1 5 3 12 14 15
|
tglnpt |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. P ) |
| 17 |
|
simpr |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. ( A I B ) ) |
| 18 |
|
simpllr |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A = B ) |
| 19 |
18
|
oveq2d |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> ( A I A ) = ( A I B ) ) |
| 20 |
17 19
|
eleqtrrd |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> t e. ( A I A ) ) |
| 21 |
1 2 3 12 13 16 20
|
axtgbtwnid |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A = t ) |
| 22 |
21 15
|
eqeltrd |
|- ( ( ( ( ph /\ A = B ) /\ t e. D ) /\ t e. ( A I B ) ) -> A e. D ) |
| 23 |
1 2 3 4 8 9
|
islnopp |
|- ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) ) |
| 24 |
10 23
|
mpbid |
|- ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) |
| 25 |
24
|
simprd |
|- ( ph -> E. t e. D t e. ( A I B ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ A = B ) -> E. t e. D t e. ( A I B ) ) |
| 27 |
22 26
|
r19.29a |
|- ( ( ph /\ A = B ) -> A e. D ) |
| 28 |
11 27
|
mtand |
|- ( ph -> -. A = B ) |
| 29 |
28
|
neqned |
|- ( ph -> A =/= B ) |