| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
opphl.l |
|- L = ( LineG ` G ) |
| 6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
| 7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
oppnid.1 |
|- ( ph -> A e. P ) |
| 9 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> G e. TarskiG ) |
| 10 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A e. P ) |
| 11 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> D e. ran L ) |
| 12 |
|
simplr |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. D ) |
| 13 |
1 5 3 9 11 12
|
tglnpt |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. P ) |
| 14 |
|
simpr |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> t e. ( A I A ) ) |
| 15 |
1 2 3 9 10 13 14
|
axtgbtwnid |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A = t ) |
| 16 |
15 12
|
eqeltrd |
|- ( ( ( ( ph /\ A O A ) /\ t e. D ) /\ t e. ( A I A ) ) -> A e. D ) |
| 17 |
1 2 3 4 8 8
|
islnopp |
|- ( ph -> ( A O A <-> ( ( -. A e. D /\ -. A e. D ) /\ E. t e. D t e. ( A I A ) ) ) ) |
| 18 |
17
|
simplbda |
|- ( ( ph /\ A O A ) -> E. t e. D t e. ( A I A ) ) |
| 19 |
16 18
|
r19.29a |
|- ( ( ph /\ A O A ) -> A e. D ) |
| 20 |
17
|
simprbda |
|- ( ( ph /\ A O A ) -> ( -. A e. D /\ -. A e. D ) ) |
| 21 |
20
|
simpld |
|- ( ( ph /\ A O A ) -> -. A e. D ) |
| 22 |
19 21
|
pm2.65da |
|- ( ph -> -. A O A ) |