Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
2 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
3 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
5 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
8 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
9 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
10 |
1 2 3 4 5 6 7 8 9
|
isopos |
|- ( K e. OP <-> ( ( K e. Poset /\ ( Base ` K ) e. dom ( lub ` K ) /\ ( Base ` K ) e. dom ( glb ` K ) ) /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( ( ( oc ` K ) ` x ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) ) |
11 |
|
simpl1 |
|- ( ( ( K e. Poset /\ ( Base ` K ) e. dom ( lub ` K ) /\ ( Base ` K ) e. dom ( glb ` K ) ) /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( ( ( oc ` K ) ` x ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) -> K e. Poset ) |
12 |
10 11
|
sylbi |
|- ( K e. OP -> K e. Poset ) |