| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
| 2 |
|
oppr0.2 |
|- .0. = ( 0g ` R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 5 |
3 4 2
|
grpidval |
|- .0. = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) ) |
| 6 |
1 3
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 7 |
1 4
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
| 8 |
|
eqid |
|- ( 0g ` O ) = ( 0g ` O ) |
| 9 |
6 7 8
|
grpidval |
|- ( 0g ` O ) = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) ) |
| 10 |
5 9
|
eqtr4i |
|- .0. = ( 0g ` O ) |