Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
2 |
|
oppr0.2 |
|- .0. = ( 0g ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
5 |
3 4 2
|
grpidval |
|- .0. = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) ) |
6 |
1 3
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
7 |
1 4
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
8 |
|
eqid |
|- ( 0g ` O ) = ( 0g ` O ) |
9 |
6 7 8
|
grpidval |
|- ( 0g ` O ) = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) ) |
10 |
5 9
|
eqtr4i |
|- .0. = ( 0g ` O ) |