Metamath Proof Explorer


Theorem oppr1

Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprbas.1
|- O = ( oppR ` R )
oppr1.2
|- .1. = ( 1r ` R )
Assertion oppr1
|- .1. = ( 1r ` O )

Proof

Step Hyp Ref Expression
1 opprbas.1
 |-  O = ( oppR ` R )
2 oppr1.2
 |-  .1. = ( 1r ` R )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 eqid
 |-  ( .r ` R ) = ( .r ` R )
5 eqid
 |-  ( .r ` O ) = ( .r ` O )
6 3 4 1 5 opprmul
 |-  ( x ( .r ` O ) y ) = ( y ( .r ` R ) x )
7 6 eqeq1i
 |-  ( ( x ( .r ` O ) y ) = y <-> ( y ( .r ` R ) x ) = y )
8 3 4 1 5 opprmul
 |-  ( y ( .r ` O ) x ) = ( x ( .r ` R ) y )
9 8 eqeq1i
 |-  ( ( y ( .r ` O ) x ) = y <-> ( x ( .r ` R ) y ) = y )
10 7 9 anbi12ci
 |-  ( ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) <-> ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) )
11 10 ralbii
 |-  ( A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) <-> A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) )
12 11 anbi2i
 |-  ( ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) <-> ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) )
13 12 iotabii
 |-  ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) )
14 eqid
 |-  ( mulGrp ` O ) = ( mulGrp ` O )
15 1 3 opprbas
 |-  ( Base ` R ) = ( Base ` O )
16 14 15 mgpbas
 |-  ( Base ` R ) = ( Base ` ( mulGrp ` O ) )
17 14 5 mgpplusg
 |-  ( .r ` O ) = ( +g ` ( mulGrp ` O ) )
18 eqid
 |-  ( 0g ` ( mulGrp ` O ) ) = ( 0g ` ( mulGrp ` O ) )
19 16 17 18 grpidval
 |-  ( 0g ` ( mulGrp ` O ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) )
20 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
21 20 3 mgpbas
 |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) )
22 20 4 mgpplusg
 |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) )
23 eqid
 |-  ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) )
24 21 22 23 grpidval
 |-  ( 0g ` ( mulGrp ` R ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) )
25 13 19 24 3eqtr4i
 |-  ( 0g ` ( mulGrp ` O ) ) = ( 0g ` ( mulGrp ` R ) )
26 eqid
 |-  ( 1r ` O ) = ( 1r ` O )
27 14 26 ringidval
 |-  ( 1r ` O ) = ( 0g ` ( mulGrp ` O ) )
28 20 2 ringidval
 |-  .1. = ( 0g ` ( mulGrp ` R ) )
29 25 27 28 3eqtr4ri
 |-  .1. = ( 1r ` O )