| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
| 2 |
|
oppr1.2 |
|- .1. = ( 1r ` R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 5 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
| 6 |
3 4 1 5
|
opprmul |
|- ( x ( .r ` O ) y ) = ( y ( .r ` R ) x ) |
| 7 |
6
|
eqeq1i |
|- ( ( x ( .r ` O ) y ) = y <-> ( y ( .r ` R ) x ) = y ) |
| 8 |
3 4 1 5
|
opprmul |
|- ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) |
| 9 |
8
|
eqeq1i |
|- ( ( y ( .r ` O ) x ) = y <-> ( x ( .r ` R ) y ) = y ) |
| 10 |
7 9
|
anbi12ci |
|- ( ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) <-> ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) |
| 11 |
10
|
ralbii |
|- ( A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) <-> A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) |
| 12 |
11
|
anbi2i |
|- ( ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) <-> ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
| 13 |
12
|
iotabii |
|- ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
| 14 |
|
eqid |
|- ( mulGrp ` O ) = ( mulGrp ` O ) |
| 15 |
1 3
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 16 |
14 15
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` O ) ) |
| 17 |
14 5
|
mgpplusg |
|- ( .r ` O ) = ( +g ` ( mulGrp ` O ) ) |
| 18 |
|
eqid |
|- ( 0g ` ( mulGrp ` O ) ) = ( 0g ` ( mulGrp ` O ) ) |
| 19 |
16 17 18
|
grpidval |
|- ( 0g ` ( mulGrp ` O ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) ) |
| 20 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 21 |
20 3
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 22 |
20 4
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 23 |
|
eqid |
|- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
| 24 |
21 22 23
|
grpidval |
|- ( 0g ` ( mulGrp ` R ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
| 25 |
13 19 24
|
3eqtr4i |
|- ( 0g ` ( mulGrp ` O ) ) = ( 0g ` ( mulGrp ` R ) ) |
| 26 |
|
eqid |
|- ( 1r ` O ) = ( 1r ` O ) |
| 27 |
14 26
|
ringidval |
|- ( 1r ` O ) = ( 0g ` ( mulGrp ` O ) ) |
| 28 |
20 2
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 29 |
25 27 28
|
3eqtr4ri |
|- .1. = ( 1r ` O ) |