Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opprc | |- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopif | |- <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) |
|
| 2 | iffalse | |- ( -. ( A e. _V /\ B e. _V ) -> if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) = (/) ) |
|
| 3 | 1 2 | eqtrid | |- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |