Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opprc | |- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif | |- <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) |
|
2 | iffalse | |- ( -. ( A e. _V /\ B e. _V ) -> if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) = (/) ) |
|
3 | 1 2 | eqtrid | |- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |