Metamath Proof Explorer


Theorem opprc

Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opprc
|- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) )

Proof

Step Hyp Ref Expression
1 dfopif
 |-  <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) )
2 iffalse
 |-  ( -. ( A e. _V /\ B e. _V ) -> if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) = (/) )
3 1 2 syl5eq
 |-  ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) )