Description: Expansion of an ordered pair when the first member is a proper class. See also opprc . (Contributed by NM, 10-Apr-2004) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opprc1 | |- ( -. A e. _V -> <. A , B >. = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( A e. _V /\ B e. _V ) -> A e. _V ) |
|
2 | opprc | |- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |
|
3 | 1 2 | nsyl5 | |- ( -. A e. _V -> <. A , B >. = (/) ) |