Metamath Proof Explorer


Theorem opprc2

Description: Expansion of an ordered pair when the second member is a proper class. See also opprc . (Contributed by NM, 15-Nov-1994) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opprc2
|- ( -. B e. _V -> <. A , B >. = (/) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( A e. _V /\ B e. _V ) -> B e. _V )
2 opprc
 |-  ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) )
3 1 2 nsyl5
 |-  ( -. B e. _V -> <. A , B >. = (/) )