Step |
Hyp |
Ref |
Expression |
1 |
|
opprdomn.1 |
|- O = ( oppR ` R ) |
2 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
3 |
1
|
opprnzr |
|- ( R e. NzRing -> O e. NzRing ) |
4 |
2 3
|
syl |
|- ( R e. Domn -> O e. NzRing ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
8 |
5 6 7
|
domneq0 |
|- ( ( R e. Domn /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( ( y ( .r ` R ) x ) = ( 0g ` R ) <-> ( y = ( 0g ` R ) \/ x = ( 0g ` R ) ) ) ) |
9 |
8
|
3com23 |
|- ( ( R e. Domn /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( y ( .r ` R ) x ) = ( 0g ` R ) <-> ( y = ( 0g ` R ) \/ x = ( 0g ` R ) ) ) ) |
10 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
11 |
5 6 1 10
|
opprmul |
|- ( x ( .r ` O ) y ) = ( y ( .r ` R ) x ) |
12 |
11
|
eqeq1i |
|- ( ( x ( .r ` O ) y ) = ( 0g ` R ) <-> ( y ( .r ` R ) x ) = ( 0g ` R ) ) |
13 |
|
orcom |
|- ( ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) <-> ( y = ( 0g ` R ) \/ x = ( 0g ` R ) ) ) |
14 |
9 12 13
|
3bitr4g |
|- ( ( R e. Domn /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` O ) y ) = ( 0g ` R ) <-> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) |
15 |
14
|
biimpd |
|- ( ( R e. Domn /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` O ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) |
16 |
15
|
3expb |
|- ( ( R e. Domn /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( .r ` O ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) |
17 |
16
|
ralrimivva |
|- ( R e. Domn -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) |
18 |
1 5
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
19 |
1 7
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` O ) |
20 |
18 10 19
|
isdomn |
|- ( O e. Domn <-> ( O e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) ) |
21 |
4 17 20
|
sylanbrc |
|- ( R e. Domn -> O e. Domn ) |