Metamath Proof Explorer


Theorem opprdomn

Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1
|- O = ( oppR ` R )
Assertion opprdomn
|- ( R e. Domn -> O e. Domn )

Proof

Step Hyp Ref Expression
1 opprdomn.1
 |-  O = ( oppR ` R )
2 1 opprdomnb
 |-  ( R e. Domn <-> O e. Domn )
3 2 biimpi
 |-  ( R e. Domn -> O e. Domn )