Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opprdomn.1 | |- O = ( oppR ` R ) |
|
Assertion | opprdomn | |- ( R e. Domn -> O e. Domn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprdomn.1 | |- O = ( oppR ` R ) |
|
2 | 1 | opprdomnb | |- ( R e. Domn <-> O e. Domn ) |
3 | 2 | biimpi | |- ( R e. Domn -> O e. Domn ) |