Step |
Hyp |
Ref |
Expression |
1 |
|
opprdomn.1 |
|- O = ( oppR ` R ) |
2 |
1
|
opprnzrb |
|- ( R e. NzRing <-> O e. NzRing ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
1 3
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
6 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
7 |
3 5 1 6
|
opprmul |
|- ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) |
8 |
7
|
eqcomi |
|- ( x ( .r ` R ) y ) = ( y ( .r ` O ) x ) |
9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
10 |
1 9
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` O ) |
11 |
8 10
|
eqeq12i |
|- ( ( x ( .r ` R ) y ) = ( 0g ` R ) <-> ( y ( .r ` O ) x ) = ( 0g ` O ) ) |
12 |
10
|
eqeq2i |
|- ( x = ( 0g ` R ) <-> x = ( 0g ` O ) ) |
13 |
10
|
eqeq2i |
|- ( y = ( 0g ` R ) <-> y = ( 0g ` O ) ) |
14 |
12 13
|
orbi12i |
|- ( ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) <-> ( x = ( 0g ` O ) \/ y = ( 0g ` O ) ) ) |
15 |
|
orcom |
|- ( ( x = ( 0g ` O ) \/ y = ( 0g ` O ) ) <-> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) |
16 |
14 15
|
bitri |
|- ( ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) <-> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) |
17 |
11 16
|
imbi12i |
|- ( ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
18 |
4 17
|
raleqbii |
|- ( A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> A. y e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
19 |
4 18
|
raleqbii |
|- ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> A. x e. ( Base ` O ) A. y e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
20 |
|
ralcom |
|- ( A. x e. ( Base ` O ) A. y e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) <-> A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
21 |
19 20
|
bitri |
|- ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
22 |
2 21
|
anbi12i |
|- ( ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) <-> ( O e. NzRing /\ A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) ) |
23 |
3 5 9
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) ) |
24 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
25 |
|
eqid |
|- ( 0g ` O ) = ( 0g ` O ) |
26 |
24 6 25
|
isdomn |
|- ( O e. Domn <-> ( O e. NzRing /\ A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) ) |
27 |
22 23 26
|
3bitr4i |
|- ( R e. Domn <-> O e. Domn ) |