Step |
Hyp |
Ref |
Expression |
1 |
|
oppreqg.o |
|- O = ( oppR ` R ) |
2 |
|
oppreqg.b |
|- B = ( Base ` R ) |
3 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
5 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
6 |
2 3 4 5
|
eqgfval |
|- ( ( R e. V /\ I C_ B ) -> ( R ~QG I ) = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` R ) ` x ) ( +g ` R ) y ) e. I ) } ) |
7 |
1
|
fvexi |
|- O e. _V |
8 |
1 2
|
opprbas |
|- B = ( Base ` O ) |
9 |
1 3
|
opprneg |
|- ( invg ` R ) = ( invg ` O ) |
10 |
1 4
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
11 |
|
eqid |
|- ( O ~QG I ) = ( O ~QG I ) |
12 |
8 9 10 11
|
eqgfval |
|- ( ( O e. _V /\ I C_ B ) -> ( O ~QG I ) = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` R ) ` x ) ( +g ` R ) y ) e. I ) } ) |
13 |
7 12
|
mpan |
|- ( I C_ B -> ( O ~QG I ) = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` R ) ` x ) ( +g ` R ) y ) e. I ) } ) |
14 |
13
|
adantl |
|- ( ( R e. V /\ I C_ B ) -> ( O ~QG I ) = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` R ) ` x ) ( +g ` R ) y ) e. I ) } ) |
15 |
6 14
|
eqtr4d |
|- ( ( R e. V /\ I C_ B ) -> ( R ~QG I ) = ( O ~QG I ) ) |