| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprbas.1 |  |-  O = ( oppR ` R ) | 
						
							| 2 |  | opprlemOLD.2 |  |-  E = Slot N | 
						
							| 3 |  | opprlemOLD.3 |  |-  N e. NN | 
						
							| 4 |  | opprlemOLD.4 |  |-  N < 3 | 
						
							| 5 | 2 3 | ndxid |  |-  E = Slot ( E ` ndx ) | 
						
							| 6 | 3 | nnrei |  |-  N e. RR | 
						
							| 7 | 6 4 | ltneii |  |-  N =/= 3 | 
						
							| 8 | 2 3 | ndxarg |  |-  ( E ` ndx ) = N | 
						
							| 9 |  | mulrndx |  |-  ( .r ` ndx ) = 3 | 
						
							| 10 | 8 9 | neeq12i |  |-  ( ( E ` ndx ) =/= ( .r ` ndx ) <-> N =/= 3 ) | 
						
							| 11 | 7 10 | mpbir |  |-  ( E ` ndx ) =/= ( .r ` ndx ) | 
						
							| 12 | 5 11 | setsnid |  |-  ( E ` R ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 14 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 15 | 13 14 1 | opprval |  |-  O = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) | 
						
							| 16 | 15 | fveq2i |  |-  ( E ` O ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) ) | 
						
							| 17 | 12 16 | eqtr4i |  |-  ( E ` R ) = ( E ` O ) |