Metamath Proof Explorer


Theorem opprlidlabs

Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses oppreqg.o
|- O = ( oppR ` R )
oppr2idl.2
|- ( ph -> R e. Ring )
Assertion opprlidlabs
|- ( ph -> ( LIdeal ` R ) = ( LIdeal ` ( oppR ` O ) ) )

Proof

Step Hyp Ref Expression
1 oppreqg.o
 |-  O = ( oppR ` R )
2 oppr2idl.2
 |-  ( ph -> R e. Ring )
3 eqid
 |-  ( Base ` O ) = ( Base ` O )
4 eqid
 |-  ( .r ` O ) = ( .r ` O )
5 eqid
 |-  ( oppR ` O ) = ( oppR ` O )
6 eqid
 |-  ( .r ` ( oppR ` O ) ) = ( .r ` ( oppR ` O ) )
7 3 4 5 6 opprmul
 |-  ( x ( .r ` ( oppR ` O ) ) a ) = ( a ( .r ` O ) x )
8 eqid
 |-  ( Base ` R ) = ( Base ` R )
9 eqid
 |-  ( .r ` R ) = ( .r ` R )
10 8 9 1 4 opprmul
 |-  ( a ( .r ` O ) x ) = ( x ( .r ` R ) a )
11 7 10 eqtr2i
 |-  ( x ( .r ` R ) a ) = ( x ( .r ` ( oppR ` O ) ) a )
12 11 a1i
 |-  ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) /\ b e. i ) -> ( x ( .r ` R ) a ) = ( x ( .r ` ( oppR ` O ) ) a ) )
13 12 oveq1d
 |-  ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) /\ b e. i ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) = ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) )
14 13 eleq1d
 |-  ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) /\ b e. i ) -> ( ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) )
15 14 ralbidva
 |-  ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) -> ( A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) )
16 15 anasss
 |-  ( ( ph /\ ( x e. ( Base ` R ) /\ a e. i ) ) -> ( A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) )
17 16 2ralbidva
 |-  ( ph -> ( A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) )
18 17 3anbi3d
 |-  ( ph -> ( ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) <-> ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) ) )
19 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
20 eqid
 |-  ( +g ` R ) = ( +g ` R )
21 19 8 20 9 islidl
 |-  ( i e. ( LIdeal ` R ) <-> ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) )
22 eqid
 |-  ( LIdeal ` ( oppR ` O ) ) = ( LIdeal ` ( oppR ` O ) )
23 1 8 opprbas
 |-  ( Base ` R ) = ( Base ` O )
24 5 23 opprbas
 |-  ( Base ` R ) = ( Base ` ( oppR ` O ) )
25 1 20 oppradd
 |-  ( +g ` R ) = ( +g ` O )
26 5 25 oppradd
 |-  ( +g ` R ) = ( +g ` ( oppR ` O ) )
27 22 24 26 6 islidl
 |-  ( i e. ( LIdeal ` ( oppR ` O ) ) <-> ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) )
28 18 21 27 3bitr4g
 |-  ( ph -> ( i e. ( LIdeal ` R ) <-> i e. ( LIdeal ` ( oppR ` O ) ) ) )
29 28 eqrdv
 |-  ( ph -> ( LIdeal ` R ) = ( LIdeal ` ( oppR ` O ) ) )