Metamath Proof Explorer


Theorem opprmul

Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypotheses opprval.1
|- B = ( Base ` R )
opprval.2
|- .x. = ( .r ` R )
opprval.3
|- O = ( oppR ` R )
opprmulfval.4
|- .xb = ( .r ` O )
Assertion opprmul
|- ( X .xb Y ) = ( Y .x. X )

Proof

Step Hyp Ref Expression
1 opprval.1
 |-  B = ( Base ` R )
2 opprval.2
 |-  .x. = ( .r ` R )
3 opprval.3
 |-  O = ( oppR ` R )
4 opprmulfval.4
 |-  .xb = ( .r ` O )
5 1 2 3 4 opprmulfval
 |-  .xb = tpos .x.
6 5 oveqi
 |-  ( X .xb Y ) = ( X tpos .x. Y )
7 ovtpos
 |-  ( X tpos .x. Y ) = ( Y .x. X )
8 6 7 eqtri
 |-  ( X .xb Y ) = ( Y .x. X )