Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
2 |
|
opprneg.2 |
|- N = ( invg ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
3 4 5 2
|
grpinvfval |
|- N = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) ) |
7 |
1 3
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
8 |
1 4
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
9 |
1 5
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` O ) |
10 |
|
eqid |
|- ( invg ` O ) = ( invg ` O ) |
11 |
7 8 9 10
|
grpinvfval |
|- ( invg ` O ) = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) ) |
12 |
6 11
|
eqtr4i |
|- N = ( invg ` O ) |