| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
| 2 |
|
opprneg.2 |
|- N = ( invg ` R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 6 |
3 4 5 2
|
grpinvfval |
|- N = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) ) |
| 7 |
1 3
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 8 |
1 4
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
| 9 |
1 5
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` O ) |
| 10 |
|
eqid |
|- ( invg ` O ) = ( invg ` O ) |
| 11 |
7 8 9 10
|
grpinvfval |
|- ( invg ` O ) = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) ) |
| 12 |
6 11
|
eqtr4i |
|- N = ( invg ` O ) |