Step |
Hyp |
Ref |
Expression |
1 |
|
oppreqg.o |
|- O = ( oppR ` R ) |
2 |
1
|
opprsubg |
|- ( SubGrp ` R ) = ( SubGrp ` O ) |
3 |
2
|
eleq2i |
|- ( g e. ( SubGrp ` R ) <-> g e. ( SubGrp ` O ) ) |
4 |
3
|
anbi1i |
|- ( ( g e. ( SubGrp ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. g -> ( y ( +g ` R ) x ) e. g ) ) <-> ( g e. ( SubGrp ` O ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. g -> ( y ( +g ` R ) x ) e. g ) ) ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
7 |
5 6
|
isnsg2 |
|- ( g e. ( NrmSGrp ` R ) <-> ( g e. ( SubGrp ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. g -> ( y ( +g ` R ) x ) e. g ) ) ) |
8 |
1 5
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
9 |
1 6
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
10 |
8 9
|
isnsg2 |
|- ( g e. ( NrmSGrp ` O ) <-> ( g e. ( SubGrp ` O ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. g -> ( y ( +g ` R ) x ) e. g ) ) ) |
11 |
4 7 10
|
3bitr4i |
|- ( g e. ( NrmSGrp ` R ) <-> g e. ( NrmSGrp ` O ) ) |
12 |
11
|
eqriv |
|- ( NrmSGrp ` R ) = ( NrmSGrp ` O ) |