Metamath Proof Explorer


Theorem opprnzrb

Description: The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr . (Contributed by SN, 20-Jun-2025)

Ref Expression
Hypothesis opprnzr.1
|- O = ( oppR ` R )
Assertion opprnzrb
|- ( R e. NzRing <-> O e. NzRing )

Proof

Step Hyp Ref Expression
1 opprnzr.1
 |-  O = ( oppR ` R )
2 1 opprringb
 |-  ( R e. Ring <-> O e. Ring )
3 2 anbi1i
 |-  ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) <-> ( O e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) )
4 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 4 5 isnzr
 |-  ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) )
7 1 4 oppr1
 |-  ( 1r ` R ) = ( 1r ` O )
8 1 5 oppr0
 |-  ( 0g ` R ) = ( 0g ` O )
9 7 8 isnzr
 |-  ( O e. NzRing <-> ( O e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) )
10 3 6 9 3bitr4i
 |-  ( R e. NzRing <-> O e. NzRing )