Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|- B = ( Base ` R ) |
2 |
|
opprqus.o |
|- O = ( oppR ` R ) |
3 |
|
opprqus.q |
|- Q = ( R /s ( R ~QG I ) ) |
4 |
|
opprqus.i |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
5 |
4
|
elfvexd |
|- ( ph -> R e. _V ) |
6 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
7 |
1
|
subgss |
|- ( I e. ( SubGrp ` R ) -> I C_ B ) |
8 |
4 6 7
|
3syl |
|- ( ph -> I C_ B ) |
9 |
1 2 3 5 8
|
opprqusbas |
|- ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
11 |
4
|
ad2antrr |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> I e. ( NrmSGrp ` R ) ) |
12 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
13 |
|
simpr |
|- ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> e e. ( Base ` ( oppR ` Q ) ) ) |
14 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
15 |
14 12
|
opprbas |
|- ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) |
16 |
15
|
eqcomi |
|- ( Base ` ( oppR ` Q ) ) = ( Base ` Q ) |
17 |
13 16
|
eleqtrdi |
|- ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> e e. ( Base ` Q ) ) |
18 |
17
|
adantr |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> e e. ( Base ` Q ) ) |
19 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` ( oppR ` Q ) ) ) |
20 |
19 16
|
eleqtrdi |
|- ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) |
21 |
20
|
adantlr |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) |
22 |
1 2 3 11 12 18 21
|
opprqusplusg |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( e ( +g ` ( oppR ` Q ) ) x ) = ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) ) |
23 |
22
|
eqeq1d |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( ( e ( +g ` ( oppR ` Q ) ) x ) = x <-> ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x ) ) |
24 |
1 2 3 11 12 21 18
|
opprqusplusg |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( x ( +g ` ( oppR ` Q ) ) e ) = ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) ) |
25 |
24
|
eqeq1d |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( ( x ( +g ` ( oppR ` Q ) ) e ) = x <-> ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) |
26 |
23 25
|
anbi12d |
|- ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) <-> ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) |
27 |
10 26
|
raleqbidva |
|- ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> ( A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) <-> A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) |
28 |
27
|
pm5.32da |
|- ( ph -> ( ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) <-> ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) |
29 |
9
|
eleq2d |
|- ( ph -> ( e e. ( Base ` ( oppR ` Q ) ) <-> e e. ( Base ` ( O /s ( O ~QG I ) ) ) ) ) |
30 |
29
|
anbi1d |
|- ( ph -> ( ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) <-> ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) |
31 |
28 30
|
bitrd |
|- ( ph -> ( ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) <-> ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) |
32 |
31
|
iotabidv |
|- ( ph -> ( iota e ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) ) = ( iota e ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) |
33 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
34 |
14 33
|
oppradd |
|- ( +g ` Q ) = ( +g ` ( oppR ` Q ) ) |
35 |
34
|
eqcomi |
|- ( +g ` ( oppR ` Q ) ) = ( +g ` Q ) |
36 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
37 |
14 36
|
oppr0 |
|- ( 0g ` Q ) = ( 0g ` ( oppR ` Q ) ) |
38 |
37
|
eqcomi |
|- ( 0g ` ( oppR ` Q ) ) = ( 0g ` Q ) |
39 |
16 35 38
|
grpidval |
|- ( 0g ` ( oppR ` Q ) ) = ( iota e ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) ) |
40 |
|
eqid |
|- ( Base ` ( O /s ( O ~QG I ) ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) |
41 |
|
eqid |
|- ( +g ` ( O /s ( O ~QG I ) ) ) = ( +g ` ( O /s ( O ~QG I ) ) ) |
42 |
|
eqid |
|- ( 0g ` ( O /s ( O ~QG I ) ) ) = ( 0g ` ( O /s ( O ~QG I ) ) ) |
43 |
40 41 42
|
grpidval |
|- ( 0g ` ( O /s ( O ~QG I ) ) ) = ( iota e ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) |
44 |
32 39 43
|
3eqtr4g |
|- ( ph -> ( 0g ` ( oppR ` Q ) ) = ( 0g ` ( O /s ( O ~QG I ) ) ) ) |