Metamath Proof Explorer


Theorem opprqus1r

Description: The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses opprqus.b
|- B = ( Base ` R )
opprqus.o
|- O = ( oppR ` R )
opprqus.q
|- Q = ( R /s ( R ~QG I ) )
opprqus1r.r
|- ( ph -> R e. Ring )
opprqus1r.i
|- ( ph -> I e. ( 2Ideal ` R ) )
Assertion opprqus1r
|- ( ph -> ( 1r ` ( oppR ` Q ) ) = ( 1r ` ( O /s ( O ~QG I ) ) ) )

Proof

Step Hyp Ref Expression
1 opprqus.b
 |-  B = ( Base ` R )
2 opprqus.o
 |-  O = ( oppR ` R )
3 opprqus.q
 |-  Q = ( R /s ( R ~QG I ) )
4 opprqus1r.r
 |-  ( ph -> R e. Ring )
5 opprqus1r.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
6 eqid
 |-  ( Base ` ( oppR ` Q ) ) = ( Base ` ( oppR ` Q ) )
7 fvexd
 |-  ( ph -> ( oppR ` Q ) e. _V )
8 ovexd
 |-  ( ph -> ( O /s ( O ~QG I ) ) e. _V )
9 5 2idllidld
 |-  ( ph -> I e. ( LIdeal ` R ) )
10 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
11 1 10 lidlss
 |-  ( I e. ( LIdeal ` R ) -> I C_ B )
12 9 11 syl
 |-  ( ph -> I C_ B )
13 1 2 3 4 12 opprqusbas
 |-  ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) )
14 4 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> R e. Ring )
15 5 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> I e. ( 2Ideal ` R ) )
16 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
17 simpr
 |-  ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` ( oppR ` Q ) ) )
18 eqid
 |-  ( oppR ` Q ) = ( oppR ` Q )
19 18 16 opprbas
 |-  ( Base ` Q ) = ( Base ` ( oppR ` Q ) )
20 17 19 eleqtrrdi
 |-  ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) )
21 20 adantr
 |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) )
22 simpr
 |-  ( ( ph /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` ( oppR ` Q ) ) )
23 22 19 eleqtrrdi
 |-  ( ( ph /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` Q ) )
24 23 adantlr
 |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` Q ) )
25 1 2 3 14 15 16 21 24 opprqusmulr
 |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> ( x ( .r ` ( oppR ` Q ) ) y ) = ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) )
26 6 7 8 13 25 urpropd
 |-  ( ph -> ( 1r ` ( oppR ` Q ) ) = ( 1r ` ( O /s ( O ~QG I ) ) ) )