Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|- B = ( Base ` R ) |
2 |
|
opprqus.o |
|- O = ( oppR ` R ) |
3 |
|
opprqus.q |
|- Q = ( R /s ( R ~QG I ) ) |
4 |
|
opprqusbas.r |
|- ( ph -> R e. V ) |
5 |
|
opprqusbas.i |
|- ( ph -> I C_ B ) |
6 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
7 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
8 |
6 7
|
opprbas |
|- ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) |
9 |
2 1
|
oppreqg |
|- ( ( R e. V /\ I C_ B ) -> ( R ~QG I ) = ( O ~QG I ) ) |
10 |
4 5 9
|
syl2anc |
|- ( ph -> ( R ~QG I ) = ( O ~QG I ) ) |
11 |
10
|
qseq2d |
|- ( ph -> ( B /. ( R ~QG I ) ) = ( B /. ( O ~QG I ) ) ) |
12 |
3
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG I ) ) ) |
13 |
1
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
14 |
|
ovexd |
|- ( ph -> ( R ~QG I ) e. _V ) |
15 |
12 13 14 4
|
qusbas |
|- ( ph -> ( B /. ( R ~QG I ) ) = ( Base ` Q ) ) |
16 |
|
eqidd |
|- ( ph -> ( O /s ( O ~QG I ) ) = ( O /s ( O ~QG I ) ) ) |
17 |
2 1
|
opprbas |
|- B = ( Base ` O ) |
18 |
17
|
a1i |
|- ( ph -> B = ( Base ` O ) ) |
19 |
|
ovexd |
|- ( ph -> ( O ~QG I ) e. _V ) |
20 |
2
|
fvexi |
|- O e. _V |
21 |
20
|
a1i |
|- ( ph -> O e. _V ) |
22 |
16 18 19 21
|
qusbas |
|- ( ph -> ( B /. ( O ~QG I ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
23 |
11 15 22
|
3eqtr3d |
|- ( ph -> ( Base ` Q ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
24 |
8 23
|
eqtr3id |
|- ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |