Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|- B = ( Base ` R ) |
2 |
|
opprqus.o |
|- O = ( oppR ` R ) |
3 |
|
opprqus.q |
|- Q = ( R /s ( R ~QG I ) ) |
4 |
|
opprqus1r.r |
|- ( ph -> R e. Ring ) |
5 |
|
opprqus1r.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
6 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
7 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
8 |
6 7
|
oppr1 |
|- ( 1r ` Q ) = ( 1r ` ( oppR ` Q ) ) |
9 |
1 2 3 4 5
|
opprqus1r |
|- ( ph -> ( 1r ` ( oppR ` Q ) ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) |
10 |
8 9
|
eqtrid |
|- ( ph -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) |
11 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
12 |
6 11
|
oppr0 |
|- ( 0g ` Q ) = ( 0g ` ( oppR ` Q ) ) |
13 |
5
|
2idllidld |
|- ( ph -> I e. ( LIdeal ` R ) ) |
14 |
|
lidlnsg |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( NrmSGrp ` R ) ) |
15 |
4 13 14
|
syl2anc |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
16 |
1 2 3 15
|
opprqus0g |
|- ( ph -> ( 0g ` ( oppR ` Q ) ) = ( 0g ` ( O /s ( O ~QG I ) ) ) ) |
17 |
12 16
|
eqtrid |
|- ( ph -> ( 0g ` Q ) = ( 0g ` ( O /s ( O ~QG I ) ) ) ) |
18 |
10 17
|
neeq12d |
|- ( ph -> ( ( 1r ` Q ) =/= ( 0g ` Q ) <-> ( 1r ` ( O /s ( O ~QG I ) ) ) =/= ( 0g ` ( O /s ( O ~QG I ) ) ) ) ) |
19 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
20 |
6 19
|
opprbas |
|- ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) |
21 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
22 |
1 21
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ B ) |
23 |
13 22
|
syl |
|- ( ph -> I C_ B ) |
24 |
1 2 3 4 23
|
opprqusbas |
|- ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
25 |
20 24
|
eqtrid |
|- ( ph -> ( Base ` Q ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
26 |
17
|
sneqd |
|- ( ph -> { ( 0g ` Q ) } = { ( 0g ` ( O /s ( O ~QG I ) ) ) } ) |
27 |
25 26
|
difeq12d |
|- ( ph -> ( ( Base ` Q ) \ { ( 0g ` Q ) } ) = ( ( Base ` ( O /s ( O ~QG I ) ) ) \ { ( 0g ` ( O /s ( O ~QG I ) ) ) } ) ) |
28 |
25
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> ( Base ` Q ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
29 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> R e. Ring ) |
30 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> I e. ( 2Ideal ` R ) ) |
31 |
|
simplr |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) |
32 |
31
|
eldifad |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> x e. ( Base ` Q ) ) |
33 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> y e. ( Base ` Q ) ) |
34 |
1 2 3 29 30 19 32 33
|
opprqusmulr |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> ( x ( .r ` ( oppR ` Q ) ) y ) = ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) ) |
35 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) |
36 |
34 35
|
eqeq12d |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> ( ( x ( .r ` ( oppR ` Q ) ) y ) = ( 1r ` Q ) <-> ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) ) |
37 |
1 2 3 29 30 19 33 32
|
opprqusmulr |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> ( y ( .r ` ( oppR ` Q ) ) x ) = ( y ( .r ` ( O /s ( O ~QG I ) ) ) x ) ) |
38 |
37 35
|
eqeq12d |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> ( ( y ( .r ` ( oppR ` Q ) ) x ) = ( 1r ` Q ) <-> ( y ( .r ` ( O /s ( O ~QG I ) ) ) x ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) ) |
39 |
36 38
|
anbi12d |
|- ( ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ y e. ( Base ` Q ) ) -> ( ( ( x ( .r ` ( oppR ` Q ) ) y ) = ( 1r ` Q ) /\ ( y ( .r ` ( oppR ` Q ) ) x ) = ( 1r ` Q ) ) <-> ( ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) = ( 1r ` ( O /s ( O ~QG I ) ) ) /\ ( y ( .r ` ( O /s ( O ~QG I ) ) ) x ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) ) ) |
40 |
28 39
|
rexeqbidva |
|- ( ( ph /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> ( E. y e. ( Base ` Q ) ( ( x ( .r ` ( oppR ` Q ) ) y ) = ( 1r ` Q ) /\ ( y ( .r ` ( oppR ` Q ) ) x ) = ( 1r ` Q ) ) <-> E. y e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) = ( 1r ` ( O /s ( O ~QG I ) ) ) /\ ( y ( .r ` ( O /s ( O ~QG I ) ) ) x ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) ) ) |
41 |
27 40
|
raleqbidva |
|- ( ph -> ( A. x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) E. y e. ( Base ` Q ) ( ( x ( .r ` ( oppR ` Q ) ) y ) = ( 1r ` Q ) /\ ( y ( .r ` ( oppR ` Q ) ) x ) = ( 1r ` Q ) ) <-> A. x e. ( ( Base ` ( O /s ( O ~QG I ) ) ) \ { ( 0g ` ( O /s ( O ~QG I ) ) ) } ) E. y e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) = ( 1r ` ( O /s ( O ~QG I ) ) ) /\ ( y ( .r ` ( O /s ( O ~QG I ) ) ) x ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) ) ) |
42 |
18 41
|
anbi12d |
|- ( ph -> ( ( ( 1r ` Q ) =/= ( 0g ` Q ) /\ A. x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) E. y e. ( Base ` Q ) ( ( x ( .r ` ( oppR ` Q ) ) y ) = ( 1r ` Q ) /\ ( y ( .r ` ( oppR ` Q ) ) x ) = ( 1r ` Q ) ) ) <-> ( ( 1r ` ( O /s ( O ~QG I ) ) ) =/= ( 0g ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( ( Base ` ( O /s ( O ~QG I ) ) ) \ { ( 0g ` ( O /s ( O ~QG I ) ) ) } ) E. y e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) = ( 1r ` ( O /s ( O ~QG I ) ) ) /\ ( y ( .r ` ( O /s ( O ~QG I ) ) ) x ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) ) ) ) |
43 |
|
eqid |
|- ( .r ` ( oppR ` Q ) ) = ( .r ` ( oppR ` Q ) ) |
44 |
|
eqid |
|- ( Unit ` Q ) = ( Unit ` Q ) |
45 |
44 6
|
opprunit |
|- ( Unit ` Q ) = ( Unit ` ( oppR ` Q ) ) |
46 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
47 |
3 46
|
qusring |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
48 |
4 5 47
|
syl2anc |
|- ( ph -> Q e. Ring ) |
49 |
6
|
opprring |
|- ( Q e. Ring -> ( oppR ` Q ) e. Ring ) |
50 |
48 49
|
syl |
|- ( ph -> ( oppR ` Q ) e. Ring ) |
51 |
20 12 8 43 45 50
|
isdrng4 |
|- ( ph -> ( ( oppR ` Q ) e. DivRing <-> ( ( 1r ` Q ) =/= ( 0g ` Q ) /\ A. x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) E. y e. ( Base ` Q ) ( ( x ( .r ` ( oppR ` Q ) ) y ) = ( 1r ` Q ) /\ ( y ( .r ` ( oppR ` Q ) ) x ) = ( 1r ` Q ) ) ) ) ) |
52 |
|
eqid |
|- ( Base ` ( O /s ( O ~QG I ) ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) |
53 |
|
eqid |
|- ( 0g ` ( O /s ( O ~QG I ) ) ) = ( 0g ` ( O /s ( O ~QG I ) ) ) |
54 |
|
eqid |
|- ( 1r ` ( O /s ( O ~QG I ) ) ) = ( 1r ` ( O /s ( O ~QG I ) ) ) |
55 |
|
eqid |
|- ( .r ` ( O /s ( O ~QG I ) ) ) = ( .r ` ( O /s ( O ~QG I ) ) ) |
56 |
|
eqid |
|- ( Unit ` ( O /s ( O ~QG I ) ) ) = ( Unit ` ( O /s ( O ~QG I ) ) ) |
57 |
2
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
58 |
4 57
|
syl |
|- ( ph -> O e. Ring ) |
59 |
2 4
|
oppr2idl |
|- ( ph -> ( 2Ideal ` R ) = ( 2Ideal ` O ) ) |
60 |
5 59
|
eleqtrd |
|- ( ph -> I e. ( 2Ideal ` O ) ) |
61 |
|
eqid |
|- ( O /s ( O ~QG I ) ) = ( O /s ( O ~QG I ) ) |
62 |
|
eqid |
|- ( 2Ideal ` O ) = ( 2Ideal ` O ) |
63 |
61 62
|
qusring |
|- ( ( O e. Ring /\ I e. ( 2Ideal ` O ) ) -> ( O /s ( O ~QG I ) ) e. Ring ) |
64 |
58 60 63
|
syl2anc |
|- ( ph -> ( O /s ( O ~QG I ) ) e. Ring ) |
65 |
52 53 54 55 56 64
|
isdrng4 |
|- ( ph -> ( ( O /s ( O ~QG I ) ) e. DivRing <-> ( ( 1r ` ( O /s ( O ~QG I ) ) ) =/= ( 0g ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( ( Base ` ( O /s ( O ~QG I ) ) ) \ { ( 0g ` ( O /s ( O ~QG I ) ) ) } ) E. y e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) = ( 1r ` ( O /s ( O ~QG I ) ) ) /\ ( y ( .r ` ( O /s ( O ~QG I ) ) ) x ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) ) ) ) |
66 |
42 51 65
|
3bitr4d |
|- ( ph -> ( ( oppR ` Q ) e. DivRing <-> ( O /s ( O ~QG I ) ) e. DivRing ) ) |