Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|- B = ( Base ` R ) |
2 |
|
opprqus.o |
|- O = ( oppR ` R ) |
3 |
|
opprqus.q |
|- Q = ( R /s ( R ~QG I ) ) |
4 |
|
opprqus.i |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
5 |
|
opprqusplusg.e |
|- E = ( Base ` Q ) |
6 |
|
opprqusplusg.x |
|- ( ph -> X e. E ) |
7 |
|
opprqusplusg.y |
|- ( ph -> Y e. E ) |
8 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
9 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
10 |
8 9
|
oppradd |
|- ( +g ` Q ) = ( +g ` ( oppR ` Q ) ) |
11 |
10
|
oveqi |
|- ( X ( +g ` Q ) Y ) = ( X ( +g ` ( oppR ` Q ) ) Y ) |
12 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> I e. ( NrmSGrp ` R ) ) |
13 |
|
simp-4r |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> p e. B ) |
14 |
|
simplr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> q e. B ) |
15 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
16 |
3 1 15 9
|
qusadd |
|- ( ( I e. ( NrmSGrp ` R ) /\ p e. B /\ q e. B ) -> ( [ p ] ( R ~QG I ) ( +g ` Q ) [ q ] ( R ~QG I ) ) = [ ( p ( +g ` R ) q ) ] ( R ~QG I ) ) |
17 |
12 13 14 16
|
syl3anc |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( [ p ] ( R ~QG I ) ( +g ` Q ) [ q ] ( R ~QG I ) ) = [ ( p ( +g ` R ) q ) ] ( R ~QG I ) ) |
18 |
|
simpllr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> X = [ p ] ( R ~QG I ) ) |
19 |
|
simpr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> Y = [ q ] ( R ~QG I ) ) |
20 |
18 19
|
oveq12d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( X ( +g ` Q ) Y ) = ( [ p ] ( R ~QG I ) ( +g ` Q ) [ q ] ( R ~QG I ) ) ) |
21 |
4
|
elfvexd |
|- ( ph -> R e. _V ) |
22 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
23 |
1
|
subgss |
|- ( I e. ( SubGrp ` R ) -> I C_ B ) |
24 |
4 22 23
|
3syl |
|- ( ph -> I C_ B ) |
25 |
2 1
|
oppreqg |
|- ( ( R e. _V /\ I C_ B ) -> ( R ~QG I ) = ( O ~QG I ) ) |
26 |
21 24 25
|
syl2anc |
|- ( ph -> ( R ~QG I ) = ( O ~QG I ) ) |
27 |
26
|
eceq2d |
|- ( ph -> [ p ] ( R ~QG I ) = [ p ] ( O ~QG I ) ) |
28 |
26
|
eceq2d |
|- ( ph -> [ q ] ( R ~QG I ) = [ q ] ( O ~QG I ) ) |
29 |
27 28
|
oveq12d |
|- ( ph -> ( [ p ] ( R ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( R ~QG I ) ) = ( [ p ] ( O ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( O ~QG I ) ) ) |
30 |
29
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( [ p ] ( R ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( R ~QG I ) ) = ( [ p ] ( O ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( O ~QG I ) ) ) |
31 |
2
|
opprnsg |
|- ( NrmSGrp ` R ) = ( NrmSGrp ` O ) |
32 |
4 31
|
eleqtrdi |
|- ( ph -> I e. ( NrmSGrp ` O ) ) |
33 |
32
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> I e. ( NrmSGrp ` O ) ) |
34 |
13 1
|
eleqtrdi |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> p e. ( Base ` R ) ) |
35 |
14 1
|
eleqtrdi |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> q e. ( Base ` R ) ) |
36 |
|
eqid |
|- ( O /s ( O ~QG I ) ) = ( O /s ( O ~QG I ) ) |
37 |
2 1
|
opprbas |
|- B = ( Base ` O ) |
38 |
1 37
|
eqtr3i |
|- ( Base ` R ) = ( Base ` O ) |
39 |
2 15
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
40 |
|
eqid |
|- ( +g ` ( O /s ( O ~QG I ) ) ) = ( +g ` ( O /s ( O ~QG I ) ) ) |
41 |
36 38 39 40
|
qusadd |
|- ( ( I e. ( NrmSGrp ` O ) /\ p e. ( Base ` R ) /\ q e. ( Base ` R ) ) -> ( [ p ] ( O ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( O ~QG I ) ) = [ ( p ( +g ` R ) q ) ] ( O ~QG I ) ) |
42 |
33 34 35 41
|
syl3anc |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( [ p ] ( O ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( O ~QG I ) ) = [ ( p ( +g ` R ) q ) ] ( O ~QG I ) ) |
43 |
30 42
|
eqtrd |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( [ p ] ( R ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( R ~QG I ) ) = [ ( p ( +g ` R ) q ) ] ( O ~QG I ) ) |
44 |
18 19
|
oveq12d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( X ( +g ` ( O /s ( O ~QG I ) ) ) Y ) = ( [ p ] ( R ~QG I ) ( +g ` ( O /s ( O ~QG I ) ) ) [ q ] ( R ~QG I ) ) ) |
45 |
26
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( R ~QG I ) = ( O ~QG I ) ) |
46 |
45
|
eceq2d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> [ ( p ( +g ` R ) q ) ] ( R ~QG I ) = [ ( p ( +g ` R ) q ) ] ( O ~QG I ) ) |
47 |
43 44 46
|
3eqtr4d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( X ( +g ` ( O /s ( O ~QG I ) ) ) Y ) = [ ( p ( +g ` R ) q ) ] ( R ~QG I ) ) |
48 |
17 20 47
|
3eqtr4d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( X ( +g ` Q ) Y ) = ( X ( +g ` ( O /s ( O ~QG I ) ) ) Y ) ) |
49 |
3
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG I ) ) ) |
50 |
1
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
51 |
|
ovexd |
|- ( ph -> ( R ~QG I ) e. _V ) |
52 |
49 50 51 21
|
qusbas |
|- ( ph -> ( B /. ( R ~QG I ) ) = ( Base ` Q ) ) |
53 |
5 52
|
eqtr4id |
|- ( ph -> E = ( B /. ( R ~QG I ) ) ) |
54 |
7 53
|
eleqtrd |
|- ( ph -> Y e. ( B /. ( R ~QG I ) ) ) |
55 |
54
|
ad2antrr |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> Y e. ( B /. ( R ~QG I ) ) ) |
56 |
|
elqsi |
|- ( Y e. ( B /. ( R ~QG I ) ) -> E. q e. B Y = [ q ] ( R ~QG I ) ) |
57 |
55 56
|
syl |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> E. q e. B Y = [ q ] ( R ~QG I ) ) |
58 |
48 57
|
r19.29a |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> ( X ( +g ` Q ) Y ) = ( X ( +g ` ( O /s ( O ~QG I ) ) ) Y ) ) |
59 |
6 53
|
eleqtrd |
|- ( ph -> X e. ( B /. ( R ~QG I ) ) ) |
60 |
|
elqsi |
|- ( X e. ( B /. ( R ~QG I ) ) -> E. p e. B X = [ p ] ( R ~QG I ) ) |
61 |
59 60
|
syl |
|- ( ph -> E. p e. B X = [ p ] ( R ~QG I ) ) |
62 |
58 61
|
r19.29a |
|- ( ph -> ( X ( +g ` Q ) Y ) = ( X ( +g ` ( O /s ( O ~QG I ) ) ) Y ) ) |
63 |
11 62
|
eqtr3id |
|- ( ph -> ( X ( +g ` ( oppR ` Q ) ) Y ) = ( X ( +g ` ( O /s ( O ~QG I ) ) ) Y ) ) |