Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
1 2
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
4 |
3
|
a1i |
|- ( R e. Ring -> ( Base ` R ) = ( Base ` O ) ) |
5 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
6 |
1 5
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
7 |
6
|
a1i |
|- ( R e. Ring -> ( +g ` R ) = ( +g ` O ) ) |
8 |
|
eqidd |
|- ( R e. Ring -> ( .r ` O ) = ( .r ` O ) ) |
9 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
10 |
3 6
|
grpprop |
|- ( R e. Grp <-> O e. Grp ) |
11 |
9 10
|
sylib |
|- ( R e. Ring -> O e. Grp ) |
12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
13 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
14 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) y ) = ( y ( .r ` R ) x ) |
15 |
2 12
|
ringcl |
|- ( ( R e. Ring /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( y ( .r ` R ) x ) e. ( Base ` R ) ) |
16 |
15
|
3com23 |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( y ( .r ` R ) x ) e. ( Base ` R ) ) |
17 |
14 16
|
eqeltrid |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` O ) y ) e. ( Base ` R ) ) |
18 |
|
simpl |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> R e. Ring ) |
19 |
|
simpr3 |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> z e. ( Base ` R ) ) |
20 |
|
simpr2 |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> y e. ( Base ` R ) ) |
21 |
|
simpr1 |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> x e. ( Base ` R ) ) |
22 |
2 12
|
ringass |
|- ( ( R e. Ring /\ ( z e. ( Base ` R ) /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( z ( .r ` R ) y ) ( .r ` R ) x ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) ) |
23 |
18 19 20 21 22
|
syl13anc |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( z ( .r ` R ) y ) ( .r ` R ) x ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) ) |
24 |
23
|
eqcomd |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( y ( .r ` R ) x ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) ) |
25 |
14
|
oveq1i |
|- ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( ( y ( .r ` R ) x ) ( .r ` O ) z ) |
26 |
2 12 1 13
|
opprmul |
|- ( ( y ( .r ` R ) x ) ( .r ` O ) z ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) |
27 |
25 26
|
eqtri |
|- ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) |
28 |
2 12 1 13
|
opprmul |
|- ( y ( .r ` O ) z ) = ( z ( .r ` R ) y ) |
29 |
28
|
oveq2i |
|- ( x ( .r ` O ) ( y ( .r ` O ) z ) ) = ( x ( .r ` O ) ( z ( .r ` R ) y ) ) |
30 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) ( z ( .r ` R ) y ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) |
31 |
29 30
|
eqtri |
|- ( x ( .r ` O ) ( y ( .r ` O ) z ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) |
32 |
24 27 31
|
3eqtr4g |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( x ( .r ` O ) ( y ( .r ` O ) z ) ) ) |
33 |
2 5 12
|
ringdir |
|- ( ( R e. Ring /\ ( y e. ( Base ` R ) /\ z e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( y ( +g ` R ) z ) ( .r ` R ) x ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) ) |
34 |
18 20 19 21 33
|
syl13anc |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( y ( +g ` R ) z ) ( .r ` R ) x ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) ) |
35 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) ( .r ` R ) x ) |
36 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) z ) = ( z ( .r ` R ) x ) |
37 |
14 36
|
oveq12i |
|- ( ( x ( .r ` O ) y ) ( +g ` R ) ( x ( .r ` O ) z ) ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) |
38 |
34 35 37
|
3eqtr4g |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x ( .r ` O ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` O ) y ) ( +g ` R ) ( x ( .r ` O ) z ) ) ) |
39 |
2 5 12
|
ringdi |
|- ( ( R e. Ring /\ ( z e. ( Base ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
40 |
18 19 21 20 39
|
syl13anc |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
41 |
2 12 1 13
|
opprmul |
|- ( ( x ( +g ` R ) y ) ( .r ` O ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) |
42 |
36 28
|
oveq12i |
|- ( ( x ( .r ` O ) z ) ( +g ` R ) ( y ( .r ` O ) z ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) |
43 |
40 41 42
|
3eqtr4g |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) ( .r ` O ) z ) = ( ( x ( .r ` O ) z ) ( +g ` R ) ( y ( .r ` O ) z ) ) ) |
44 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
45 |
2 44
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
46 |
2 12 1 13
|
opprmul |
|- ( ( 1r ` R ) ( .r ` O ) x ) = ( x ( .r ` R ) ( 1r ` R ) ) |
47 |
2 12 44
|
ringridm |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 1r ` R ) ) = x ) |
48 |
46 47
|
eqtrid |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` O ) x ) = x ) |
49 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) ( 1r ` R ) ) = ( ( 1r ` R ) ( .r ` R ) x ) |
50 |
2 12 44
|
ringlidm |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
51 |
49 50
|
eqtrid |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` O ) ( 1r ` R ) ) = x ) |
52 |
4 7 8 11 17 32 38 43 45 48 51
|
isringd |
|- ( R e. Ring -> O e. Ring ) |