Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
2 |
1
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
3 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
4 |
3
|
opprring |
|- ( O e. Ring -> ( oppR ` O ) e. Ring ) |
5 |
|
eqidd |
|- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
1 6
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
8 |
3 7
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` O ) ) |
9 |
8
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( oppR ` O ) ) ) |
10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
11 |
1 10
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
12 |
3 11
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` O ) ) |
13 |
12
|
oveqi |
|- ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) |
14 |
13
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) ) |
15 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
16 |
|
eqid |
|- ( .r ` ( oppR ` O ) ) = ( .r ` ( oppR ` O ) ) |
17 |
7 15 3 16
|
opprmul |
|- ( x ( .r ` ( oppR ` O ) ) y ) = ( y ( .r ` O ) x ) |
18 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
19 |
6 18 1 15
|
opprmul |
|- ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) |
20 |
17 19
|
eqtr2i |
|- ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) |
21 |
20
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) ) |
22 |
5 9 14 21
|
ringpropd |
|- ( T. -> ( R e. Ring <-> ( oppR ` O ) e. Ring ) ) |
23 |
22
|
mptru |
|- ( R e. Ring <-> ( oppR ` O ) e. Ring ) |
24 |
4 23
|
sylibr |
|- ( O e. Ring -> R e. Ring ) |
25 |
2 24
|
impbii |
|- ( R e. Ring <-> O e. Ring ) |