| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprbas.1 |  |-  O = ( oppR ` R ) | 
						
							| 2 | 1 | opprrng |  |-  ( R e. Rng -> O e. Rng ) | 
						
							| 3 |  | eqid |  |-  ( oppR ` O ) = ( oppR ` O ) | 
						
							| 4 | 3 | opprrng |  |-  ( O e. Rng -> ( oppR ` O ) e. Rng ) | 
						
							| 5 |  | eqidd |  |-  ( T. -> ( Base ` R ) = ( Base ` R ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 7 | 1 6 | opprbas |  |-  ( Base ` R ) = ( Base ` O ) | 
						
							| 8 | 3 7 | opprbas |  |-  ( Base ` R ) = ( Base ` ( oppR ` O ) ) | 
						
							| 9 | 8 | a1i |  |-  ( T. -> ( Base ` R ) = ( Base ` ( oppR ` O ) ) ) | 
						
							| 10 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 11 | 1 10 | oppradd |  |-  ( +g ` R ) = ( +g ` O ) | 
						
							| 12 | 3 11 | oppradd |  |-  ( +g ` R ) = ( +g ` ( oppR ` O ) ) | 
						
							| 13 | 12 | oveqi |  |-  ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) | 
						
							| 14 | 13 | a1i |  |-  ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) ) | 
						
							| 15 |  | eqid |  |-  ( .r ` O ) = ( .r ` O ) | 
						
							| 16 |  | eqid |  |-  ( .r ` ( oppR ` O ) ) = ( .r ` ( oppR ` O ) ) | 
						
							| 17 | 7 15 3 16 | opprmul |  |-  ( x ( .r ` ( oppR ` O ) ) y ) = ( y ( .r ` O ) x ) | 
						
							| 18 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 19 | 6 18 1 15 | opprmul |  |-  ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) | 
						
							| 20 | 17 19 | eqtr2i |  |-  ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) | 
						
							| 21 | 20 | a1i |  |-  ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) ) | 
						
							| 22 | 5 9 14 21 | rngpropd |  |-  ( T. -> ( R e. Rng <-> ( oppR ` O ) e. Rng ) ) | 
						
							| 23 | 22 | mptru |  |-  ( R e. Rng <-> ( oppR ` O ) e. Rng ) | 
						
							| 24 | 4 23 | sylibr |  |-  ( O e. Rng -> R e. Rng ) | 
						
							| 25 | 2 24 | impbii |  |-  ( R e. Rng <-> O e. Rng ) |