Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
1 2
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
4 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
5 |
1 4
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
6 |
3 5
|
grpprop |
|- ( R e. Grp <-> O e. Grp ) |
7 |
|
biid |
|- ( x C_ ( Base ` R ) <-> x C_ ( Base ` R ) ) |
8 |
|
eqid |
|- ( R |`s x ) = ( R |`s x ) |
9 |
8 2
|
ressbas |
|- ( x e. _V -> ( x i^i ( Base ` R ) ) = ( Base ` ( R |`s x ) ) ) |
10 |
9
|
elv |
|- ( x i^i ( Base ` R ) ) = ( Base ` ( R |`s x ) ) |
11 |
|
eqid |
|- ( O |`s x ) = ( O |`s x ) |
12 |
11 3
|
ressbas |
|- ( x e. _V -> ( x i^i ( Base ` R ) ) = ( Base ` ( O |`s x ) ) ) |
13 |
12
|
elv |
|- ( x i^i ( Base ` R ) ) = ( Base ` ( O |`s x ) ) |
14 |
10 13
|
eqtr3i |
|- ( Base ` ( R |`s x ) ) = ( Base ` ( O |`s x ) ) |
15 |
8 4
|
ressplusg |
|- ( x e. _V -> ( +g ` R ) = ( +g ` ( R |`s x ) ) ) |
16 |
11 5
|
ressplusg |
|- ( x e. _V -> ( +g ` R ) = ( +g ` ( O |`s x ) ) ) |
17 |
15 16
|
eqtr3d |
|- ( x e. _V -> ( +g ` ( R |`s x ) ) = ( +g ` ( O |`s x ) ) ) |
18 |
17
|
elv |
|- ( +g ` ( R |`s x ) ) = ( +g ` ( O |`s x ) ) |
19 |
14 18
|
grpprop |
|- ( ( R |`s x ) e. Grp <-> ( O |`s x ) e. Grp ) |
20 |
6 7 19
|
3anbi123i |
|- ( ( R e. Grp /\ x C_ ( Base ` R ) /\ ( R |`s x ) e. Grp ) <-> ( O e. Grp /\ x C_ ( Base ` R ) /\ ( O |`s x ) e. Grp ) ) |
21 |
2
|
issubg |
|- ( x e. ( SubGrp ` R ) <-> ( R e. Grp /\ x C_ ( Base ` R ) /\ ( R |`s x ) e. Grp ) ) |
22 |
3
|
issubg |
|- ( x e. ( SubGrp ` O ) <-> ( O e. Grp /\ x C_ ( Base ` R ) /\ ( O |`s x ) e. Grp ) ) |
23 |
20 21 22
|
3bitr4i |
|- ( x e. ( SubGrp ` R ) <-> x e. ( SubGrp ` O ) ) |
24 |
23
|
eqriv |
|- ( SubGrp ` R ) = ( SubGrp ` O ) |