Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
opphl.l |
|- L = ( LineG ` G ) |
6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
8 |
|
oppcom.a |
|- ( ph -> A e. P ) |
9 |
|
oppcom.b |
|- ( ph -> B e. P ) |
10 |
|
oppcom.o |
|- ( ph -> A O B ) |
11 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> G e. TarskiG ) |
12 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> x e. P ) |
13 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> y e. P ) |
14 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> A e. P ) |
15 |
1 2 3 4 5 6 7 8 9 10
|
oppne1 |
|- ( ph -> -. A e. D ) |
16 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. A e. D ) |
17 |
|
simprl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> D = ( x L y ) ) |
18 |
16 17
|
neleqtrd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. A e. ( x L y ) ) |
19 |
|
simprr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> x =/= y ) |
20 |
19
|
neneqd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. x = y ) |
21 |
|
ioran |
|- ( -. ( A e. ( x L y ) \/ x = y ) <-> ( -. A e. ( x L y ) /\ -. x = y ) ) |
22 |
18 20 21
|
sylanbrc |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> -. ( A e. ( x L y ) \/ x = y ) ) |
23 |
1 5 3 11 12 13 14 22
|
ncoltgdim2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( D = ( x L y ) /\ x =/= y ) ) -> G TarskiGDim>= 2 ) |
24 |
1 3 5 7 6
|
tgisline |
|- ( ph -> E. x e. P E. y e. P ( D = ( x L y ) /\ x =/= y ) ) |
25 |
23 24
|
r19.29vva |
|- ( ph -> G TarskiGDim>= 2 ) |