| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oprab2co.1 |  |-  ( ( x e. A /\ y e. B ) -> C e. R ) | 
						
							| 2 |  | oprab2co.2 |  |-  ( ( x e. A /\ y e. B ) -> D e. S ) | 
						
							| 3 |  | oprab2co.3 |  |-  F = ( x e. A , y e. B |-> <. C , D >. ) | 
						
							| 4 |  | oprab2co.4 |  |-  G = ( x e. A , y e. B |-> ( C M D ) ) | 
						
							| 5 | 1 2 | opelxpd |  |-  ( ( x e. A /\ y e. B ) -> <. C , D >. e. ( R X. S ) ) | 
						
							| 6 |  | df-ov |  |-  ( C M D ) = ( M ` <. C , D >. ) | 
						
							| 7 | 6 | a1i |  |-  ( ( x e. A /\ y e. B ) -> ( C M D ) = ( M ` <. C , D >. ) ) | 
						
							| 8 | 7 | mpoeq3ia |  |-  ( x e. A , y e. B |-> ( C M D ) ) = ( x e. A , y e. B |-> ( M ` <. C , D >. ) ) | 
						
							| 9 | 4 8 | eqtri |  |-  G = ( x e. A , y e. B |-> ( M ` <. C , D >. ) ) | 
						
							| 10 | 5 3 9 | oprabco |  |-  ( M Fn ( R X. S ) -> G = ( M o. F ) ) |