Description: Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | oprab4 | |- { <. <. x , y >. , z >. | ( <. x , y >. e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp | |- ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) |
|
2 | 1 | anbi1i | |- ( ( <. x , y >. e. ( A X. B ) /\ ph ) <-> ( ( x e. A /\ y e. B ) /\ ph ) ) |
3 | 2 | oprabbii | |- { <. <. x , y >. , z >. | ( <. x , y >. e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } |