Metamath Proof Explorer


Theorem oprab4

Description: Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010)

Ref Expression
Assertion oprab4
|- { <. <. x , y >. , z >. | ( <. x , y >. e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) }

Proof

Step Hyp Ref Expression
1 opelxp
 |-  ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) )
2 1 anbi1i
 |-  ( ( <. x , y >. e. ( A X. B ) /\ ph ) <-> ( ( x e. A /\ y e. B ) /\ ph ) )
3 2 oprabbii
 |-  { <. <. x , y >. , z >. | ( <. x , y >. e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) }