Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oprabbidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
Assertion | oprabbidv | |- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabbidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | nfv | |- F/ x ph |
|
3 | nfv | |- F/ y ph |
|
4 | nfv | |- F/ z ph |
|
5 | 2 3 4 1 | oprabbid | |- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } ) |