Metamath Proof Explorer


Theorem oprabbidv

Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004)

Ref Expression
Hypothesis oprabbidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion oprabbidv
|- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } )

Proof

Step Hyp Ref Expression
1 oprabbidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 nfv
 |-  F/ x ph
3 nfv
 |-  F/ y ph
4 nfv
 |-  F/ z ph
5 2 3 4 1 oprabbid
 |-  ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } )