Metamath Proof Explorer


Theorem oprabbii

Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypothesis oprabbii.1
|- ( ph <-> ps )
Assertion oprabbii
|- { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps }

Proof

Step Hyp Ref Expression
1 oprabbii.1
 |-  ( ph <-> ps )
2 eqid
 |-  w = w
3 1 a1i
 |-  ( w = w -> ( ph <-> ps ) )
4 3 oprabbidv
 |-  ( w = w -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } )
5 2 4 ax-mp
 |-  { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps }