Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995) (Revised by David Abernethy, 19-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oprabbii.1 | |- ( ph <-> ps ) |
|
Assertion | oprabbii | |- { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabbii.1 | |- ( ph <-> ps ) |
|
2 | eqid | |- w = w |
|
3 | 1 | a1i | |- ( w = w -> ( ph <-> ps ) ) |
4 | 3 | oprabbidv | |- ( w = w -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } ) |
5 | 2 4 | ax-mp | |- { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } |