Step |
Hyp |
Ref |
Expression |
1 |
|
oprabco.1 |
|- ( ( x e. A /\ y e. B ) -> C e. D ) |
2 |
|
oprabco.2 |
|- F = ( x e. A , y e. B |-> C ) |
3 |
|
oprabco.3 |
|- G = ( x e. A , y e. B |-> ( H ` C ) ) |
4 |
1
|
adantl |
|- ( ( H Fn D /\ ( x e. A /\ y e. B ) ) -> C e. D ) |
5 |
2
|
a1i |
|- ( H Fn D -> F = ( x e. A , y e. B |-> C ) ) |
6 |
|
dffn5 |
|- ( H Fn D <-> H = ( z e. D |-> ( H ` z ) ) ) |
7 |
6
|
biimpi |
|- ( H Fn D -> H = ( z e. D |-> ( H ` z ) ) ) |
8 |
|
fveq2 |
|- ( z = C -> ( H ` z ) = ( H ` C ) ) |
9 |
4 5 7 8
|
fmpoco |
|- ( H Fn D -> ( H o. F ) = ( x e. A , y e. B |-> ( H ` C ) ) ) |
10 |
3 9
|
eqtr4id |
|- ( H Fn D -> G = ( H o. F ) ) |