| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oprabco.1 |  |-  ( ( x e. A /\ y e. B ) -> C e. D ) | 
						
							| 2 |  | oprabco.2 |  |-  F = ( x e. A , y e. B |-> C ) | 
						
							| 3 |  | oprabco.3 |  |-  G = ( x e. A , y e. B |-> ( H ` C ) ) | 
						
							| 4 | 1 | adantl |  |-  ( ( H Fn D /\ ( x e. A /\ y e. B ) ) -> C e. D ) | 
						
							| 5 | 2 | a1i |  |-  ( H Fn D -> F = ( x e. A , y e. B |-> C ) ) | 
						
							| 6 |  | dffn5 |  |-  ( H Fn D <-> H = ( z e. D |-> ( H ` z ) ) ) | 
						
							| 7 | 6 | biimpi |  |-  ( H Fn D -> H = ( z e. D |-> ( H ` z ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( z = C -> ( H ` z ) = ( H ` C ) ) | 
						
							| 9 | 4 5 7 8 | fmpoco |  |-  ( H Fn D -> ( H o. F ) = ( x e. A , y e. B |-> ( H ` C ) ) ) | 
						
							| 10 | 3 9 | eqtr4id |  |-  ( H Fn D -> G = ( H o. F ) ) |