Metamath Proof Explorer


Theorem opreu2reu

Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023) (Revised by AV, 2-Jul-2023)

Ref Expression
Hypothesis opreu2reurex.a
|- ( p = <. a , b >. -> ( ph <-> ch ) )
Assertion opreu2reu
|- ( E! p e. ( A X. B ) ph -> E! a e. A E! b e. B ch )

Proof

Step Hyp Ref Expression
1 opreu2reurex.a
 |-  ( p = <. a , b >. -> ( ph <-> ch ) )
2 1 opreu2reurex
 |-  ( E! p e. ( A X. B ) ph <-> ( E! a e. A E. b e. B ch /\ E! b e. B E. a e. A ch ) )
3 2rexreu
 |-  ( ( E! a e. A E. b e. B ch /\ E! b e. B E. a e. A ch ) -> E! a e. A E! b e. B ch )
4 2 3 sylbi
 |-  ( E! p e. ( A X. B ) ph -> E! a e. A E! b e. B ch )