Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023) (Revised by AV, 2-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opreu2reurex.a | |- ( p = <. a , b >. -> ( ph <-> ch ) ) |
|
Assertion | opreu2reu | |- ( E! p e. ( A X. B ) ph -> E! a e. A E! b e. B ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opreu2reurex.a | |- ( p = <. a , b >. -> ( ph <-> ch ) ) |
|
2 | 1 | opreu2reurex | |- ( E! p e. ( A X. B ) ph <-> ( E! a e. A E. b e. B ch /\ E! b e. B E. a e. A ch ) ) |
3 | 2rexreu | |- ( ( E! a e. A E. b e. B ch /\ E! b e. B E. a e. A ch ) -> E! a e. A E! b e. B ch ) |
|
4 | 2 3 | sylbi | |- ( E! p e. ( A X. B ) ph -> E! a e. A E! b e. B ch ) |