Step |
Hyp |
Ref |
Expression |
1 |
|
opreuopreu.a |
|- ( ( a = ( 1st ` p ) /\ b = ( 2nd ` p ) ) -> ( ps <-> ph ) ) |
2 |
|
elxpi |
|- ( p e. ( A X. B ) -> E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) ) |
3 |
|
simprl |
|- ( ( ph /\ ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) ) -> p = <. a , b >. ) |
4 |
|
vex |
|- a e. _V |
5 |
|
vex |
|- b e. _V |
6 |
4 5
|
op1st |
|- ( 1st ` <. a , b >. ) = a |
7 |
6
|
eqcomi |
|- a = ( 1st ` <. a , b >. ) |
8 |
4 5
|
op2nd |
|- ( 2nd ` <. a , b >. ) = b |
9 |
8
|
eqcomi |
|- b = ( 2nd ` <. a , b >. ) |
10 |
7 9
|
pm3.2i |
|- ( a = ( 1st ` <. a , b >. ) /\ b = ( 2nd ` <. a , b >. ) ) |
11 |
|
fveq2 |
|- ( p = <. a , b >. -> ( 1st ` p ) = ( 1st ` <. a , b >. ) ) |
12 |
11
|
eqeq2d |
|- ( p = <. a , b >. -> ( a = ( 1st ` p ) <-> a = ( 1st ` <. a , b >. ) ) ) |
13 |
|
fveq2 |
|- ( p = <. a , b >. -> ( 2nd ` p ) = ( 2nd ` <. a , b >. ) ) |
14 |
13
|
eqeq2d |
|- ( p = <. a , b >. -> ( b = ( 2nd ` p ) <-> b = ( 2nd ` <. a , b >. ) ) ) |
15 |
12 14
|
anbi12d |
|- ( p = <. a , b >. -> ( ( a = ( 1st ` p ) /\ b = ( 2nd ` p ) ) <-> ( a = ( 1st ` <. a , b >. ) /\ b = ( 2nd ` <. a , b >. ) ) ) ) |
16 |
10 15
|
mpbiri |
|- ( p = <. a , b >. -> ( a = ( 1st ` p ) /\ b = ( 2nd ` p ) ) ) |
17 |
16 1
|
syl |
|- ( p = <. a , b >. -> ( ps <-> ph ) ) |
18 |
17
|
biimprd |
|- ( p = <. a , b >. -> ( ph -> ps ) ) |
19 |
18
|
adantr |
|- ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) -> ( ph -> ps ) ) |
20 |
19
|
impcom |
|- ( ( ph /\ ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) ) -> ps ) |
21 |
3 20
|
jca |
|- ( ( ph /\ ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) ) -> ( p = <. a , b >. /\ ps ) ) |
22 |
21
|
ex |
|- ( ph -> ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) -> ( p = <. a , b >. /\ ps ) ) ) |
23 |
22
|
2eximdv |
|- ( ph -> ( E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) -> E. a E. b ( p = <. a , b >. /\ ps ) ) ) |
24 |
2 23
|
syl5com |
|- ( p e. ( A X. B ) -> ( ph -> E. a E. b ( p = <. a , b >. /\ ps ) ) ) |
25 |
17
|
biimpa |
|- ( ( p = <. a , b >. /\ ps ) -> ph ) |
26 |
25
|
a1i |
|- ( p e. ( A X. B ) -> ( ( p = <. a , b >. /\ ps ) -> ph ) ) |
27 |
26
|
exlimdvv |
|- ( p e. ( A X. B ) -> ( E. a E. b ( p = <. a , b >. /\ ps ) -> ph ) ) |
28 |
24 27
|
impbid |
|- ( p e. ( A X. B ) -> ( ph <-> E. a E. b ( p = <. a , b >. /\ ps ) ) ) |
29 |
28
|
reubiia |
|- ( E! p e. ( A X. B ) ph <-> E! p e. ( A X. B ) E. a E. b ( p = <. a , b >. /\ ps ) ) |